SMILES retrieval and spectroscopy

Thanks to SMILES colleagues

NICT SMILES members Leader: Yasko Kasai (NICT/ Tokyo Institute of Tech) Instrument and L1b: Satoshi Ochiai, Ken Kikuchi, Toshiyuki Nishibori L2 research: Hideo Sagawa, Tomohiro Sato, Jana Mendrok(Lulea U.), Joachim Urban, Joakim Muller, Donal Murtagh (Chalmers U.) Validation and Science: Kengo Yokoyama, Kota Kuribayashi, Taka Yamada, Nawo Suzuki, Mona Mahani, Bengt Rydberg Climatology: Daniel Kreyling Modeling: Ralph Lehmann,

JAXA SMILES members

Leader: Masato Takayanagi, Masato Shiotani (Kyoto U.) Instrument: Toshiyuki Nishibori, L2: Takuki Sano, Makoto Suzuki,

Superconducting Submillimeter-Wave Limb-Emission Sounder What is SMILES?

Collaboration project of NICT and JAXA

A instrument sub-mm (600GHz) spectroscopic limb observation from International space station with one order magnitude better sensitivity than past similar satellite measurements measurements station.

Table 1. SMILES instrumental specifications

Parameters	Characteristics			
Orbit	Inclination angle 51.6°			
	Non sun-synchronous orbit			
Scanning geometry	Limb scan			
Scan altitude	-20-100 km			
Latitude coverage	38° S-65° N (nominal)			
Nominal data sampling	103 scans per orbit, 1630 scans per day			
Frequency range	624.32 - 625.52 GHz (Band-A)			
	625.12 - 626.32 GHz (Band-B)			
	649.12 - 650.32 GHz (Band-C)			
Antenna field-of-view	0.089° (HPBW)			
Sampling interval	0.056°			
Receiver system	SIS mixers and HEMT amplifiers			
Spectrometers	Acousto Optical Spectrometers (AOS)			
Frequency resolution	1.0-1.2 MHz			
Channel separation	0.8 MHz			
System noise temperature	315-350 K			
Integration time for	0.47 s			
single spectrum				

Odin/SMRAura/MLSTsys: 3000KTsys: 6000K(SSB@500GHz)(DSB@650GHz)

JEM/SMILES Tsys: 350K (SSB@650GHz)

Observed Spectrum

Good things:

- Very good precision. 0.6K noise for 240K signal intensity of ozone.
 Simply, retrieval precision is better than 0.3%
- Quite low ripple in the spectrum. Less than 0.5%.
- Stable less than 1K over scan.

Problems:

- Pointing problems
- Non- linearity problem of the spectrum:

624.4 624.6 624.8 625.0 625.2 625.4 Frequency [GHz] 625.2 625.4 625.6 625.8 626.0 626.2 Frequency [GHz]

649.2 649.4 649.6 649.8 650.0 650.2 650.4 Frequency [GHz]

AMTD 6, 2643–2720, 2013	SMILES O ₃ validation (NICT L2-v215)	Y. Kasai et al. Title Page	Absiract Introduction Conclusions References Tables Figures I ▲ I ■ I Back Close	Full Screen / Esc Printer-friendly Version Interactive Discussion
Atmospheric Atmospheric Discussions Measurement Techniques Discussions Discussions	the journal Atmospheric Measurement a an ag final paper in AMT if available.	eric and served by SMILES	zuki ^{1,3} , E. Dupuy ^{1,4} , T. O. Sato ^{2,1} , Mizobuchi ⁶ , K. Kikuchi ¹ , T. Manabe ⁷ , jiri ¹ , K. A. Walker ^{10,11} , P. F. Bernath ¹² , J. Orphal ¹³ , J. Urban ¹⁴ , D. Murtagh ¹⁴ , urassa ¹⁵ , N. D. Lloyd ¹⁵ , Schreier ¹⁷ , J. Xu ¹⁷ , P. Vogt ¹⁷ ,	ions Technology (NICT), wa, Japan and Sciences, Meguro, Tokyo, Japan uba, Ibaraki, Japan ukuba, Japan , Japan
Atmos. Meas. Tech. Discuss., 6, 2643–2720, 2013 www.atmos-meas-tech-discuss.net/6/2643/2013/ doi:10.5194/amtd-6-2643-2013 © Author(s) 2013. CC Attribution 3.0 License.	This discussion paper is/has been under review for Techniques (AMT). Please refer to the correspondin	Validation of stratosph mesospheric ozone ob	Y. Kasai ^{1,2} , H. Sagawa ¹ , D. Kreyling ¹ , K. Su: J. Mendrok ^{5,1} , P. Baron ¹ , T. Nishibori ^{6,1} , S. I H. Ozeki ⁸ , T. Sugita ⁴ , M. Fujiwara ⁹ , Y. Irimaj C. Boone ¹¹ , G. Stiller ¹³ , T. von Clarmann ¹³ , E. J. Llewellyn ¹⁵ , D. Degenstein ¹⁵ , A. E. Bot L. Froidevaux ¹⁶ , M. Birk ¹⁷ , G. Wagner ¹⁷ , F. §	¹ National Institute of Information and Communicati Koganei, Tokyo, Japan ² Tokyo Institute of Technology, Yokohama, Kanaga ³ The University of Technology, Yokohama, Kanaga ⁴ National Institute for Environmental Studies, Tsuk ⁵ Luleå University of Technology, Kiruna, Sweden ⁶ Japan Aerospace Exploration Agency (JAXA), Tsi ⁷ Osaka Prefecture University, Naka, Sakai, Osaka, 2643

Ozone spectrum and its sensitivity

Retrieval precision is better than 0.3% Error source of ozone is NOT coming from spectrum noise.

L2 analysis of SMILES Ozone spectrum

What we have to care for the SMILES retrieval

- 1. SMILES Characteristics: Ultra good signal to noise ratio
 - \rightarrow Required 'accurate' (about 0.3%)
 - instrumental functions.
- radiative transfer calculation including spectroscopic parameters.
- 2. ISS problem: Large uncertainty of the tangent hei and SMILES has no O2 observation.
 - \rightarrow Required appropriate retrieval method.
- 3. Characteristics of Heterodyne passive sub-mm sensor

Not accurate calibration (compared solar occultation) and problems, such as non-linearity of the spectrum, are exist.

L1b spectrums: non-linearity + tangent height version 007: Certain problems version 008 : Less problem. Certain improvement.

Error source for SMILES ozone

Table 3. Systematic errors and their perturbations considered in this study. For each error source, the corresponding label in Fig. 3 is indicated in the parentheses. The resulting error values at the O₃ peak level (8.3 hPa or 36 km) are given in the right column.

Error source	Perturbation	Error on O ₃ at 8.3 hPa	
Spectroscopic parameters of O ₃ 625.371 GHz			7
Line intensity (O3stg)	1%	1.0%	
Air pressure broadening, γ (O3g)	3%	-2.2%	
Temperature dependence, n, of O3g (O3n)	10%	-1.8%	
Impact from other species			
H ³⁵ CI-625.901 GHz γ (HCl35g)	3%	0.01 %	
H ³⁵ CI-625.901 GHz <i>n</i> (HCl35n)	10%	0.01 %	
H ³⁷ Cl-624.964 GHz γ (HCl37g)	3%	0.02 %	
H ³⁷ CI-624.964 GHz <i>n</i> (HCl37n)	10%	0.01 %	
O ₃ v _{1,3} -625.051 GHz γ (O3v13g)	3%	0.01 %	
OO ¹⁸ O-625.091 GHz γ (O318g)	3%	0.01 %	
OO ¹⁸ O-625.563 GHz γ (O318g2)	3%	-0.2 %	
Dry air continuum (DRY)	20%	-0.05 %	
Instrumental functions			
Image side-band (SSB)	see below ¹	-0.08 %	
AOS response function width (AOS)	10 % ²	-0.4 %	
Antenna FOV drift (ANTSCAN)	see below ³	-1.8%	Improvement
Calibration			Improvement
Non-linearity gain correction (CAL2)	20 % ⁴	1.5 %	from spectrum
Total (RSS_total)		3.8%	$\frac{1}{10000000000000000000000000000000000$

¹ Difference between the cases considering the realistic rejection rate for the image side-band signal and an ideal one.

² Perturbation added on the FWHM of the response function.

³ Difference between the cases with and without considering the drift of the antenna FOV during 0.47 s.

⁴ Perturbation added on the gain compression factor.

Ozone spectrum and its sensitivity

Largest error source is the spectroscopic parameters for ozone.

SMILES Pressure Broadening Parameters

Complete No observation

stimated/some measurement

	Frequency	γ(air)	n	δ0 Pressure shift	S	Current	Required	References
	[GHz]	[MHz/Torr]		[MHz/Torr]		Accuracy	Accuracy	
H ₂ O	620.701	4.379				2%	1%	Y. kasai, to be published
O ₃	625.372	2.99 ^a 2.906 ^b	0.93 ^a 0.723 ^b	0	0	4% 2%	1%	^a M.M. Yamada <i>JQSRT, Vol.95,</i> 221-230(2005), ^b BJDrouin, <i>JMS, Vol.251, 194-202(2008)</i>
O ₃	650.732	3.006	0.598			2%	1%	^b BJDrouin, <i>JMS, Vol.251, 194-202(2008)</i>
O ₃ isotopes	Many	3.10 (647.691 GHz)		0	0	5%	0.50%	M.M. Yamada JQSRT, Vol.95, 221-230(2005),
H ³⁵ Cl	625.919	3.42	0.73	0.146	0.4047	4%	1%	BJDrouin, <i>JQSRT, Vol.83, 321-331(2004),</i>
H ³⁷ Cl	624.978	3.42 ^a 3.51 ^b	0.73 ^a 	0.146 ^a 0.123 ^b	0.4047 ^a 	4% ?	1%	^a BJDrouin, <i>JQSRT, Vol.83, 321-331(2004),</i> ^b Ozeki et al., private communication
CIO	649.451	2.86	0.77	0	0	3%	1%	MLS Spectroscopic catalog (2010 Nov 10) J . J. Oh and E. A. Cohen
HO ₂	625.660	3.00		0	0	0	3%	B.J.Drouin, MLS clear sky production forward model2002)
	649.702	2.74	-0.2	0	0	4%	3%	M.M.Yamada (Thesis) should confirm
H_2O_2	625.044	3.71		0	0	2.4%	3%	T. O. Sato <i>JQSRT, Vol.111,</i> 821-825(2010),
HOCI	625.076	3.881	0.650	-0.076	0.397	4.6%	3%	635GHz B.J.Drouin, <i>JQSRT, Vol.103,</i> 558-564(2007)
BrO	624.768	3.05	0.80	0	0	3%	5%	M.M. Yamada <i>JQSRT, Vol.82, 391-399(2003)</i> ,
	650.179	3.03	0.81	0	0	3%	5%	M.M. Yamada <i>JQSRT, Vol.82, 391-399(2003),</i>
HNO ₃	624.484	4.09	0.70	-0.13	0	0	3%	T.O.Sato. Estimated from the paper, J.
	624.776	4.09	0.70	-0.13	0	0	3%	Atm.Chem., Vol.51, 161-205, (2005). Line
	625.345	4.33	0.70	-0.13	0	0	3%	thesis of Miriam von Konig (U. of
	650.288	4.09	0.70	-0.13	0	0	3%	Bremen).
CH₃CN	624.819	4.79			0		3%	B.J.Drouin, MLS clear sky production forward model2002) Different

Summary of comparison between SMILES and other measurements

SMILES agree well in the stratosphere, had negative trend above 1hPa due to the problems of non-linearity and tangent height problem.

GOMOS-SMILES comparisons L1b 007 L1b 008

Development of retrieval algorithm for SMILES observation of $\delta^{18}\text{OOO}$ from stratosphere to mesosphere

Tomohiro Sato and Yasko Kasai Tokyo Institute of Technology and NICT

Scientific requirement from SMILES team

- Accurate spectroscopic parameters (gamma, n) better than < 1 %.
- Absorption cross section for ozone isotopomers including Asym-18/17 O3, Sym-18/17 O3.

More close collaboration with laboratory cross section measurement team for isotope study.