Progress of HARMONICS project: harmonization of GOME, SCIAMACHY and GOME-2 ozone cross-sections

Anna Serdyuchenko, Victor Gorshelev, Wissam Chehade, Mark Weber, John P. Burrows

University of Bremen, Institute for Environmental Physics

Introduction and motivation

✓ Experimental set-up

Analysis of sources of uncertainty

✓ Results and Outlook

Introduction and motivation

- ✓ Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- □ Results and Outlook

University Bremen, IUP, Molecular Spectroscopy Lab

Long term ozone observations

Introduction

- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook
- Long-term time-series of O₃ and NO₂ are important for air quality study, Montreal Protocol monitoring of ozone depleting substances, ozone-climate interaction etc
- Long-term global data sets covering several decades are only available by combining datasets from multiple sensors.
- At least two decades of observations with global coverage in several days

Spectrometer Satellite		Launch	Pre-launch O3 cross-sections	
GOME	ERS-2	April 1995	GOME FM (Burrows et al. 1999)	
SCIAMACHY	ENVISAT	March 2002	SCIAMACHY FM (Bogumil et al. 2003)	
GOME-2	MetOp -A	October 2006	GOME2 FM3 (Gür et al., 2005)	
	MetOp - B	~ June 2010	GOME2 FM21 (Gür et al., 2005)	
	MetOp - C	~ 2016	-	

Inconsistency of satellite instruments cross-section

- Introduction
- ✓ GOME FM, SCIAMACHY FM, GOME-2 FM₃ and GOME-2 FM₂₁ were used to measure cross-sections prior to launch using the experimental set-up CATGAS.
- Analysis of sources for uncertainty

□ Experimental set-up

- Results and Outlook
- Problems:
 stray light and "baseline" issues;
 temperature range all above 200 K
- ✓ Inconsistencies between FM cross-sections
 - SCIAMACHY total O₃ retrieved (with SCIAMACHY reference spectra) are 5% higher than GOME (with GOME reference spectra) in the range 325-335 nm
 - GOME2 total O₃ retrieved (using GOME2 reference spectra) is <u>9</u>% higher than calculated with resolution adjusted GOME FM
 - Two approaches for harmonisation of O_3 FM cross-sections for a consistent retrieval:
 - re-analysis of laboratory data from the CATGAS campaigns
 - new laboratory measurements

Main directions of laboratory activity

- Introduction
 I. Thorough analysis of the possible sources for uncertainties in previous campaigns to improve laboratory measurements
- Analysis of source for uncertainty
 New high quality spectra
- □ Results and Outlook sufficient accuracy to detect a 1% pro decade trend
 - should improve absolute scaling and wavelength scaling.
 - ✓ should have best possible quality to serve as a most reliable reference source:
 - wavelength coverage 240–1000 nm;
 - vacuum wavelength accuracy better than 0.001 nm;
 - spectral resolution of about 0.02 nm;
 - absolute intensities accurate to at least 2% through the Hartley–Huggins and Chappuis bands;
 - Temperature range: 190K-300K, with more points than was obtained so far (usually 4-5 temperatures).

Experimental Set-up

- ✓ Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- □ Results and Outlook

University Bremen, IUP, Molecular Spectroscopy Lab

Ozone cross sections at 240-1000 nm

- ☑ Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

Main parts of experimental set-up

☑ Introduction		Setup VIS/IR	Setup UV/VIS
 Experimental set-up Analysis of sources for uncertainty 	Spectrometer	Fourier Transform	Echellet (`cross dispersion')
Results and Outlook	Source	Xe and Tungsten lamps	Xe and D2 lamp
	Detector	Si/GaP photodiode	ICCD
	Resolution	0.02 nm @ 300 nm	0.02 nm @ 300 nm
	Wavelength region	300 – 1000 nm	210 nm – 600 nm
	Acquisition time	Slow (tens of minutes)	Fast (minutes)
	Wavelength calibration	Excellent	Excellent (agrees with NIST Hg line at 253 nm better than 0.001 nm)
	Optical path	135 and 270 cm	5 cm, 140 cm – 30 m
	Cooling	Double jacket quartz cell, p	re-cooler, cryogenic cooling (193 K)

Analysis of sources for uncertainty

- Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- □ Results and Outlook

 $\delta F(x_i) = \sqrt{\sum_{i} \left(\frac{\partial F}{\partial x_i} \cdot \delta x_i\right)^2}$

Analysis of sources of uncertainty

🗹 Int	roduction	Beer-Lambert Law: <i>I = I_α exp[-OD] = I_α exp[- σnL]</i>		
🗹 Exp	perimental set-up			
Mana Ana Una	Analysis of sources for uncertaintyI / I_o - transmitted intensity with /without absorber, σ - cross section (linearly connected with optical density, varies over 7 orders)			
 Results and Outlook M – absorber 		magnitud N – absorbe	de), r density, L – absorption path length	
Problem Intensity drift Spectral concatenation			Possible solution	
			 Quick measurements; Correction by absolute scaling with non-zero off-set 	
		nation	 Extension of the system dynamic range: good signal-to-noise ratio to get linear OD 0.01-1 Independent calibration 	
	Wavelength calib	oration	 Thermal stabilization; Automatic calibration when using FT (Fourier transform) spectrometer 	
Absolute calibration Temperature		ion	New approaches and methods	
			 Efficient cooling with pre-cooler; Spectroscopic method for temperature control 	

Analysis of sources of uncertainty: temperature control

- Introduction
- ☑ Experimental set-up

Cooling:

Control:

Pre-cooling:

- Analysis of sources for uncertainty
- Results and Outlook

double jacket (vacuum/ethanol) cell, cryostat 10 m Cu tube coil with inert coating O2-A band at 760 nm, experimental spectrum from FTS at 0.5 cm, model spectrum HITRAN line parameters.

University Bremen, IUP, Molecular Spectroscopy Lab

Analysis of sources of uncertainty: temperature control

- ☑ Introduction
- Experimental set-up

Control:

Accuracy:

- Analysis of sources for uncertainty
- Results and Outlook

O2-A band at 760 nm, experimental spectrum from FTS at 0.5 cm, model spectrum HITRAN line parameters. 5 K or better

University Bremen, IUP, Molecular Spectroscopy Lab

Analysis of sources of uncertainty: baseline drift (off-set)

- Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

Baseline (I_o) drift:

- the most important source of the uncertainty (OD calculated from of two measurements – with/without absorbing gas- separated by time.
- Source I: Lamp intensity drift. Can <u>partly</u> be corrected by "quasi simultaneous" spectrum over by-pass optical path (not possible for FTspectrometer).
 - **Source II**: Drift of the optical components, resulting in unstable illumination of the grating or detector. Can not be corrected experimentally.
 - Typically about 1%

ossible solutions:

- Interpolation of the baseline behavior in time
- Quick measurements
- Correction by off-set parameter in absolute scaling

University Bremen, IUP, Molecular Spectroscopy Lab

Analysis of sources of uncertainty: single OD spectrum reproducibility

- Introduction
- Experimental set-up
- Analysis of sources fo uncertainty
- Results and Outlook

FTS:

Spectrum averaged from 250 scans (about 25 minutes) Source: tungsten lamp

Echelle:

Spectrum averaged from 250 scans (about 5 minutes) Source: xenon lamp Note: the picture presents a single spectrum (without concatenation)

Analysis of sources of uncertainty: dynamic range and spectra concatenation

Introduction

0,1

- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

250 260 270 280 290 300 310 320 330 340 350 wavelength, nm

Problems:

- With dynamic range OD o.1 1 at least seven independent measurements at different combinations of absorption length and ozone density are needed.
- Gluing spectra together: scaling spectra relative each to other with addition/multiplication of errors;
- Not best parts of spectra are used;
- ✓ Wavelength shift.

Solutions:

- ✓ to extend the system dynamic range (improving signal-tonoise ratio) to get o.o1 < OD < 1</pre>
- Independent absolute calibration

Analysis of sources of uncertainty: scaling factor and off-set

☑ Introduction

Ideal case: cross-section σ is linearly linked with optical density OD via A – scaling factor: $\sigma = \frac{OD}{n \cdot L} = A \cdot OD$

 Analysis of sources for uncertainty

☑ Experimental set-up

In reality intensity drift:

Results and Outlook

$$I_{0}(t_{2}) \approx b \cdot I_{0}(t_{1})$$

$$OD' = \ln[I_{0}(t_{2})/I] = \ln[b \cdot I_{0}(t_{1})/I] = \ln[I_{0}(t_{1})/I] + \ln b$$

$$OD' = OD + \delta OD$$

Correction for the intensity drift: an offset in scaling procedure (the offset has a sense of the intensity drift factor):

$$\sigma(\lambda) = A \cdot OD(\lambda) - B$$

Small off-set *B*: drift factor $b \sim 1$ (undisturbed measurement). Large off-set: significant drift and insufficient quality of the measurement.

Typical offset ~ 1 %

Analysis of sources of uncertainty: absolute calibration

- ☑ Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

Former approach	Alternative approach
One absolute calibration for concatenated spectrum	Separate absolute calibrations of every part
Scaling spectra relative each to other	Independent scaling of single spectra
"Bad" parts of spectrum are used	Best part or the whole spectrum is used
Addition/multiplication of errors	Individual correction of baseline drifts

Scaling factor? Offset?

Analysis of sources of uncertainty: methods for absolute calibration

Introduction

Scaling factor and offset:

- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

From least squares fit (experimental OD vs reference crosssections): choice of reference points extremely important (J.Orphal review)

Single point scaling - well-known Hg line at 253 nm

Absolute ozone density from reliable temperature and pressure measurements:

Ozone generator OFF	Ozone generator ON
$n1 = n_{O2}$	$n_{2} = n'_{O_{2}} + n_{O_{3}}$
$302 \rightarrow 203 \implies n2 < n$	1 Pressure drop at constant flow and temperature

Serial measurements and preliminary results

- ☑ Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

First attempt for absolute calibration: fit to external datasets

Introduction			– – – – – – – – – – – – – – – – – – –	
 Experimental set-up Analysis of sources for uncertainty Results and Outlook 	Dataset		Resolution, FWHM, nm	Wavelength region, nm
	Current work	FTS	0.02 - 0.20	300 – 1000
		Echellet	0.02	211 – 830
	High Resolution FTS by Voigt et al.		0.05 - 0.50	231-851
	SCIAMACHY		0.32 -1.45	230–1070
	GOME, GOME-2		0.2-0.4	231-794
	High Reso	olution Brion et al.	0.02	195 – 830

- External datasets: GOME, GOME2, SCIAMACHY, Brion et al (high resolution)
- ✓ First approximation: no resolution matching

First attempt for absolute calibration: fit to external datasets in VIS/IR

- Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

Least squares fit to GOME and GOME-2 (293K):

First attempt for absolute calibration: fit to external datasets in VIS/IR at 193 K

- Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty

Least squares fit to GOME and GOME-2 (193K)

First attempt for absolute calibration: fit to external datasets in VIS/IR

- Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- ☑ Results and Outlook

Least squares fit to *SCIAMACHY* (293K and 193K)

First attempt for absolute calibration: fit to external datasets in VIS/IR

Least squares fit to *Brion et al* (293K):

- ☑ Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook

University Bremen, IUP, Molecular Spectroscopy Lab

Second attempt for absolute calibration: by pressure measurements (FTS)

- Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook
 - Three independent measurements in UV/VIS/IR with FTS spectrometer (293K)
 - Each spectrum is absolutely calibrated from temperature and pressure measurements

Second attempt for absolute calibration: by pressure measurements (FTS)

- Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook
 - Three independent measurements in UV/VIS/IR with FTS spectrometer (293K)
 - Each spectrum is absolutely calibrated from temperature and pressure measurements

Second attempt for absolute calibration: by pressure measurements (FTS)

- Introduction
- Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook
 - Three independent measurements in UV/VIS/IR with FTS spectrometer (293K)
 - Each spectrum is absolutely calibrated from temperature and pressure measurements

Second attempt for absolute calibration: by pressure measurements (Echellet)

- Introduction
- ☑ Experimental set-up
- ☑ Analysis of sources for uncertainty

Results and Outlook

spectrometer (293K)✓ Each spectrum is absolutely calibrated from temperature and

Three independent measurements in UV and VIS with Echellet

pressure measurements

Second attempt for absolute calibration: by pressure measurements (Echellet)

- Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty

Results and Outlook

- Independent measurements in UV at 4 temperatures with Echelle spectrometer
- Each spectrum is absolutely calibrated from temperature and pressure measurements

Results and outlook

- ☑ Introduction
- ☑ Experimental set-up
- Analysis of sources for uncertainty
- Results and Outlook
- Experimental set-up is modified to match modern demands on the spectral quality and to minimize uncertainties.
- Serial measurements are started for UV/VIS/IR region at temperatures 193 – 293 K.
- Experimental data evaluation (concatenation and absolute calibration of the relative optical density spectrum): in progress in close connection with the reanalysis of the CATGAS campaign results.
- ✓ New cross-sections set is expected by the end of 2010

Appendix

University Bremen, IUP, Molecular Spectroscopy Lab

Cooling system: priorities/challenges

□ Goals and strategy

□ Re-analysis

- ☑ Experimental set-up
- Serial measurements and preliminary results

Upgraded cooling system

✓ Max possible cooling: down to 193 K

Temperature stabilization at intermediate points with step of 10 K

Reliable temperature determination (better than 5% accuracy) : Pt sensors, spectroscopic method

Upgraded gas pre-cooler

- features 10 meter Cu pipe bound to fit cryostat bath
- guaranteed cooling down to cryostat vessel temperature
- ozone-friendly internal coating
- minimal heat gain between pre-cooler ant test cell

Cu surface passivated against Ozone destruction