Laboratory laser-based measurements of ozone concentration in the Hartley Band and corresponding absorption cross section

M. Petersen, P. Moussay, J. Viallon and R.I. Wielgosz, Bureau International des Poids et Mesures (BIPM)

Overview

- Introduction, ozone standard reference (Hg lamp, 254 nm) vs. Gas phase titration.
- Laser-based ozone concentration measurements at 248 nm.
- Future absolute determination of ozone absorption cross section at 244 nm, 248 nm and 257 nm.

- Introduction, ozone standard reference (Hg lamp, 254 nm) vs. Gas phase titration.
- Laser-based ozone concentration measurements at 248 nm.
- Future absolute determination of ozone absorption cross section at 244 nm, 248 nm and 257 nm.

Ozone concentration standard reference

UV photometry

 $x = \frac{-1}{2\sigma L_{opt}} \frac{T}{P} \frac{R}{N_A} \ln(D)$

- Temperature in the cells
- **P** Pressure in the cells
- L_{opt} light path length

x mole fraction of ozone in dry air (nmol/mol)

- **N**_A Avogadro constant
- **R** Ideal gas constant
- σ Absorption cross section

D Fraction between cells with and without ozone (transmittance).

$$D = \frac{I(\text{cell 1})}{I_0(\text{cell 2})} \cdot \frac{I(\text{cell 2})}{I_0(\text{cell 1})}$$
$$= T(\text{cell 1}) \cdot T(\text{cell 2})$$

Light source: **Mercury lamp** ~ 253.6517 nm (in air)

The Ozone absorption cross section

Ozone absorption cross section at 254 nm

The value of Hearn '61 is used for the standard reference: 1147.10⁻²⁰ cm²/molecule

Gas Phase Titration

Observed biases in the SRPs

Viallon, J., P. Moussay, J.E. Norris, F.R. Guenther, and R.I. Wielgosz, A study of systematic biases and measurement uncertainties in ozone mole fraction measurements with the NIST Standard Reference Photometer. Metrologia, 2006. 43: 441-450.

- Introduction, ozone standard reference (Hg lamp, 254 nm) vs. Gas phase titration.
- Laser-based ozone concentration measurements at 248 nm.
- Future absolute determination of ozone absorption cross section at 244 nm, 248 nm and 257 nm.

Better protection from the environment

Power stabilization

Comparison between SRP 33 and the laser-based photometer (one-cell setup) at 248 nm

Comparison between SRP 33 and the laser-based photometer

Comparison between SRP 33 and the laser-based photometer

- Introduction, ozone standard reference (Hg lamp, 254 nm) vs. Gas phase titration.
- Laser-based ozone concentration measurements at 248 nm.
- Future absolute determination of ozone absorption cross section at 244 nm, 248 nm and 257 nm.

Plans for absolute measurements of the ozone absorption cross section at 244 nm, 248 nm and 257 nm

Mauersberger et al, 1986	Daumont et al, 1992
 Fill a vacuum chamber with pure oxygen. Create ozone with ozone generator while continuously trap the ozone in a cryotrap at 77 K. Stop creating ozone and pump out remaining gas (mostly oxygen). Increase cryostat temperature to 80-90 K where the ozone has a vapour pressure of 0.1-1 mbar. Measure pressure. Measure oxygen/ozone ratio with mass spectrum analyzer. Rinse-and-repeat to eventually decrease oxygen concentration. 	 Fill a vacuum chamber with pure oxygen at about 1 mbar. Close off vacuum chamber. Measure pressure. Create ozone with ozone generator while continuously trap the ozone in a cryotrap at 77 K. Stop creating ozone. Release all trapped ozone by (slowly) increasing cryotrap temperature. Measure pressure. Ozone partial pressure given by p_{O3} = 2((p_{O2})_{init} - p_T)
 Simultaneously measuring of absorption cross Simultaneously measuring of absorption cross 	sorption of laser light in 5 cm long h can be determined more precisely. s section. Target uncertainty: 0.5 %.

Planned setup for ozone cross section measurements

Main Points/Conclusion

- Further study of the difference between measurements of ozone concentration done by Hg-lamp and done by titration is needed.
- A laser-based photometer at 248 nm can reach same level of stability as the Hg-lamp based standard reference photometer.
- The BIPM is building a new experimental setup to measure the absolute value of the absorption cross section of ozone at 244 nm, 248 nm and 257 nm.

www.bipm.org www.metrologyinfo.org

