Impact of ozone cross-section choice on DOAS total ozone retrieval

M. Weber, W. Chehade, A. Serdyuchenko, J. P. Burrows *Universität Bremen FB1, Institut für Umweltphysik (iup)*

weber@uni-bremen.de

http://www.iup.uni-bremen.de/UVSAT

IGACO-O3 Ozone Theme Meeting 2009

IGACO -O3/IO3C Ozone Theme Meeting 1, Geneva, May 11-13, 2009

Topics

DOAS total ozone retrieval from satellites

- Relevant ozone cross-sections
- Diagnostics:
 - → Temperature dependence
 - ➔ direct comparison of cross-section
 - → wavelength shifts & scaling
- Requirements for new laboratory measurements

Past and current (near) global UV TO3 satellite data **Cross-section** UV satellite instruments with extended total ozone records currently in use scan mirror degradation Bass & Paur (adj) TOMS Bass & Paur SBUV/2 Burrows et al. loss of global coverage GOME Bogumil et al. (scaled) **SCIAMACHY Bass Paur/Bass Paur** OMI Burrows et al. GOME2 1980 1985 1990 1995 2000 2005 2010

- BUV/Nimbus 4 has been reprocessed (1970-1980), but severe calibration problems
- ➔ TOMS and SBUV TO3 retrievals relies mainly on dicrete wavelengths, e.g. pair/triple retrieval (Dobson like) or optimal estimation
- GOME/SCIAMACHY/GOME2 use the DOAS technique (differential optical absorption spectroscopy).
- → OMI uses both (OMI-TOMS, OMI-DOAS)

DOAS total ozone retrieval and ozone temperature

Weighting function DOAS

$$\ln \frac{I_{obs}}{F_{obs}} = \ln \left(\frac{I}{F}\right)_{mod} + \frac{d \ln(I/F)}{d \operatorname{Toz}} \mid_{mod} (\operatorname{TOZ}_{fit} - \operatorname{TOZ}_{clim}) + \frac{d \ln(I/F)}{d \operatorname{T}} \mid_{mod} (\operatorname{T}_{fit} - \operatorname{T}_{clim}) + \ldots + \operatorname{Pol}$$

Radiation transfer model

"Standard" DOAS

$$\ln \frac{I_{obs}}{F_{obs}} = -SC_1 \cdot \sigma(T_1) - SC_2 \cdot \sigma(T_2) + + \cdots + Pol$$

$$T_1 \approx 220 \text{ K}$$

$$T_2 \approx 240 \text{ K}$$

$$TOZ = (SC_1 + SC_2) / AMF$$
Roozendael et al., 2006
Radiation transfer model

- ➔ DOAS satellite retrievals
 - O 325-335 nm
 - three methods (all accounting for Tdependence in σ)
 - Weighting function doas (Coldewey-Egbers et al., 2005, Weber et al., 2005)
 - Standard DOAS: ESA operational retrieval (Roozendael et al. 2006)
 - Empirical AMF DOAS (OMI-DOAS): uses ECMWF T-profiles, (Eskes et al., 2005, Vefkind et al., 2006)

Brewer-Dobson comparison at Hohenpeissenberg

- Very good agreement, higher seasonality in the differences with Dobsons
- Error sources:
 - temperature dependence of cross-section (constant in ground retrievals)
 - Dobson error: 1.3%/10K (Komhyr et al. 1988)
 - OBrewer error: 0.0-0.9%/10K (Kerr 2002)
 - ➔ Different x-sections
 - OBass-Paur (Brew/Dobs) vs. Burrows et al. (GOME)
 - → straylight issue at high SZA (all instruments)

Hohenpeissenberg 48 °N,11 °E

Cross-section data for satellite/ground retrievals

 Temperature parametrerisation after Bass-Paur (t temperature in °C. λ wavelength in nm):

$$\sigma(\lambda, t) = a_0(\lambda) \left[1 + a_1(\lambda)t + a_2(\lambda)t^2 \right]$$

ozone cross-sections from the UV to NIR

7

Temperature parameterization

► Problems:

- ➔ GOME FM: Overlap region between Channel 1 and 2 (~315 nm)
- → SCIAMACHY FM: overlap region (Ch. 1&2), ~334 nm
- ➔ GOME2 FM3: different temperature dependence

8

Temperature parameterization II

- Problems with other data:
 - ➔ Bass-Paur: noisier, particularly 315-320 nm
 - ➔ Above 335 nm, Bass-Paur extended with Vigroux(?)
 - Malicet: fairly consistent, slightly different temperature behaviour (second coefficient sometimes negative)

ESA HARMONICS PM1, 2009/04/01

Consistency of cross-sections: Bass-Paur parameterisation I

ESA HARMONICS PM1, 2009/04/01

330

 $\sigma(\lambda, t) = a_0(\lambda) \left[1 + a_1(\lambda)t + a_2(\lambda)t^2 \right]$

► GOME FM:

→ Differences at individual temperatures below 0.5%

Consistency of cross-sections: Bass-Paur parameterisation II

330

 $\sigma(\lambda, t) = a_0(\lambda) \left[1 + a_1(\lambda)t + a_2(\lambda)t^2 \right]$

SCIA FM:

- → Differences at individual temperatures below 0.5%
- → Changes from GOME FM to SCIA FM larger near absorption maximum (328 nm)

Consistency of cross-sections: Bass-Paur parameterisation III

 $\sigma(\lambda, t) = a_0(\lambda) \left[1 + a_1(\lambda)t + a_2(\lambda)t^2 \right]$

- Bass-Paur:
 - ➔ Differences at individual temperatures close to 3% (218 K)!

Consistency of cross-sections: Bass-Paur parameterisation III

330

 $\sigma(\lambda, t) = a_0(\lambda) \left[1 + a_1(\lambda)t + a_2(\lambda)t^2 \right]$

- Differences at individual temperatures close to 3% (218 K)!
- Malicet et al:
 - → different behaviour at low T: T<218 K

Slit function fit

(Transfer) slit function derived from comparison between (a) crosssections and (b) from solar data

$$\sigma'(\lambda, T) = c_0 \cdot \sigma(\lambda + \Delta\lambda, T) \otimes r(\lambda) + Pol(\lambda)$$
$$I'(\lambda) = c_0 \cdot I(\lambda + \Delta\lambda) \otimes r(\lambda) + Pol(\lambda)$$

- Fit parameters in non-linear least squares fit:
 - → Scaling factor: c_o
 - \rightarrow wavelength shift: $\Im \lambda$
 - \rightarrow Instrument function r(λ)
 - Gaussian (sym)
 - Doppel-Voigt (assym)
 - → Polynomial: $Pol(\lambda)$
- High spectral resolution reference data:
 - → Kitt-Peak FTS solar data
 - → Malicet O3 cross-sections

Cross-section issues in satellite DOAS I

Cross-sections	T[K]	Shift [nm]	FWHM [nm]	solar FWHM [nm]	Scaling [-]	Scaling wrt GOME1
Burrows et al. 1999 GOME FM	225 240	+0.017(2) +0.017(2)	0.158(5) 0.159(6)	0.165(8)	1.027(2) 1.023(2)	-
Bogumil et al. 2003 SCIAMACHY FM	225 240	+0.008(2) +0.009(2)	0.222(6) 0.219(6)	0.202(13)	0.970(3) 0.973(3)	0.944 - <mark>5</mark> % 0.951 -5%
Spietz et al. GOME2 FM3	225 240	-0.047(2) -0.046(2)	-	0.286(27)	0.950(7) 0.938(6)	0.925 <mark>-8</mark> % 0.917

Slitfunction fits w.r.t. Malicet cross-sections: 326.6-334.5 nm

→ Shifts minimising fit residuals in WFDOAS agree with shifts from cross-section comparisons (good wavelength calibration for Malicet et al.)

→ SCIAMACHY FM requiring a scaling of +5% wrt to GOME1,

- GOME2-FM3 under investigation (large shift and scaling)
 - Total ozone change is -6DU/0.01nm shift (or -2%/0.01 nm) !!!

Cross-section issues in satellite DOAS II

Ozone fit residual RMS for GOME1, SCIAMACHY, and GOME2 as a function of crosssection shifts. Black dots indicate optimum shifts from direct comparisons between cross-sections with respect to a shift of 0.017nm in GOME1 as used in WFDOAS V1.

- Cross-section shifts are nearly consistent with minimum fit residual RMS requirements and wavelength calibration of Kitt Peak solar atlas ("Fraunhofer fitting")
- Fit residuals are lowest with GOME 2

Satellite-Brewer difference time series

- Using scaled SCIAMACHY FM good consistency with GOME
- Comparison between satellites and with Brewers show a downward trend in SCIAMACHY of about -0.4%/year (algorithm independent, level-1 calibration issue, see also Lerot et al. 2009)

Use of various cross-sections in WFDOAS retrievals

- With optimum shifts and slit function convolution retrievals show similar fit rms for Malicet and GOME/SCIA/GOME2 FM, Malicet slightly better at high SZA
- Bass Paur leads to higher fit residuals

Requirements on "new" UV/Vis x-section measurements

- Important requirements for laboratory measurements
 - → Wavelength calibration (-2% O3 error/0.01nm shift)
 - → Absolute scaling, e.g. cross-path experiment with 253.65 nm as reference
 - Temperature stability & sufficient numbers of temperature points
 - ➔ Good slit function characterisation and/or sufficient high spectral resolution (~0.01 nm)
- ESA HARMONICS study
 - new cross-section measurements (see next talk by Anna Serdyuchenko)
 - ➔ Reanalysis of GOME, SCIA, and GOME2 x-section data

Requirements on UV/Vis O3 x-section measurements

- Important wavelength regions:
 - → 240-330 nm: nadir profile retrieval
 - Absolute x-section
 - → 305-335 nm: nadir column retrieval
 - Temperature dependence, wavelength calibration
 - → 335-380 nm: auxiliary retrieval for OCIO, BrO, O4, NO2, H2CO, glyoxal
 - → 240-600 nm: Limb scatter UV/VIS (Hartley-Huggins-Chappuis, 10-65 km altitude)
- Verification by retrieval studies
 - Minimisation of fit residuals using solar reference (Fraunhofer fitting) and proper wavelength shifts in xsection
 - → Verification of retrieved ozone temperatures with meteorological analysis and atmospheric data