

OMI Ozone DOAS and Profile Products Impact of Ozone Cross Sections

Pepijn Veefkind, Maarten Sneep, Mark Kroon, and Pieternel Levelt

Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Introduction

- Total ozone OMI DOAS algorithm OMDOAO3.
- OMI Ozone Profile algorithm OMO3PR.
- Cross sections tested:
 - Bass Paur
 - Brion Mallicet Daumont

OMDOAO3 Algorithm

- Fitting window 331.6 336.6 nm.
- Fit function:

$$\frac{I(\lambda)}{F(\lambda)} = P(\lambda) \exp\left[-N_s \sigma_{O3}(\lambda, T_{eff})\right] + c_{Ring} \frac{I_{Ring}(\lambda)}{F(\lambda)} \exp\left[-N_s \sigma_{O3}'(\lambda, T_{eff})\right]$$

• Where:

$$\sigma_{O3}(\lambda, T_{eff}) = \sigma_{O3}(\lambda, T_0) + \left(T_{eff} - T_0\right) \frac{d\sigma_{O3}(\lambda)}{dT} \bigg|_{T=T_0}$$

- Fit parameters: slant ozone column, effective ozone temperature, Ring parameters, polynomial coefficients (2nd order).
- Linearization of the ozone cross section around 220 K.
- Bass-Paur are the default cross sections used.

Comparison of cross sections

Comparison of cross sections

Effective Ozone Temperature

Sodankyla SAUNA Campaign 2006

De Bilt Colors: sonde Black: OMI DOAS 2006

Cross section test

- Orbits 6783 to 6796 of October 2005.
- Bass-Paur and Malicet-Daumont-Brion cross sections are concoolved with the same slit functions.
- Analysis with the CAMA tool.

Comparison of cross sections

Cross sections @ 220 K

Temperature derivative @ 220 K

O₃ [DU]:: MDB

500

Statistics

	Bass-Paur	Mallicet-Daumont-Brion
O ₃ Column	284 ± 63.6 DU	283 ± 63.5 DU
O ₃ Column Precision	4.06 ± 1.88 DU	4.36 ± 2.04 DU
O ₃ Column Difference	1.13 ± 1.92 DU	N/A
Effective O ₃ Temperature	207 ± 5.23 K	203 ± 6.93 K
Effective O ₃ Temperature Precision	$3.74 \pm 2.78 \text{ K}$	5.21 ± 2.56 K

O₃[DU]:: BP

EO₃T [K]:: BMD

O₃ [DU]:: BP-BMD

Correlation between Temperature and Ozone Difference

Correlation coefficient 0.9

Conclusions OMDOAO3

- Difference in ozone column 1 ± 2 DU (1sigma).
- Bass-Paur fit the data with higher precision and less residual.
- Difference in ozone correlates with the retrieved effective ozone temperature.
- For this fit window there is no clear reason to shift to other cross-sections.

OMI OMO3PR

- Optimal estimation
- Wavelength range:
 - 270 308.5 OMI UV-1
 - 311.5 330 OMI UV-2
- State vector includes:
 - Ozone at 18 layers
 - UV-1 and UV-2 Albedo (surface/cloud, 2nd order polynomial)
 - UV-1 and UV-2 Radiance stray light (2nd order polynomial)
- Pressure-Temperature profile from ECMWF.
- Cloud pressure for O_2 - O_2 cloud product.
- A-prior Labow, Logan, McPeters, with 20% error and 6 km correlation length.

Forward Model

- LABOS (Layers Based Orders of Scattering).
- Includes Raman scattering.
- Polarization is corrected using LUTs.

Test Setup

- Single Orbit 6704, across track position 17.
- Orbits has been run using Bass and Paur (BP) and Brion Malicet Daumont (BMD) Cross section.

Comparison of Total Ozone

2* (BP - BMD) / (BP + BMD) : -0.92 \pm 1.26 %

Difference in Ozone Profile

2 * (BMD - BP) / (BMD + BP) Mean over 1 orbit, xtrack position 17

Comparison of Residuals

Residuals [10 measurements, Tropics]

Comparison of Residuals

Comparison of Residuals

Conclusions OMO3PR

- Results based on a limited data set.
- Total column ozone ~1 \pm 1% lower values for BMD.
- Difference at specific layers can be 10-15%, increasing towards the troposphere.
- From the residuals there is no clear indication which cross sections are better.