
Plans for the Ozone-cci

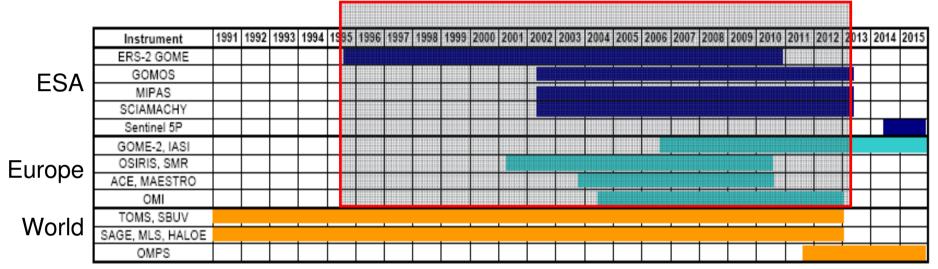
The ESA Climate Change Initiative (CCI)

- > Overall aim: generate space based climate data record
- > using an integrated and consistent approach
- Time frame: 2010-2013 (first phase)
- 12 projects
 (11 ECVs + CMUG)
- <u>Ozone_cci</u> → started on 1st Sep 2010

SPARC/IOC/WMO-IGACO workshop on ozone profile changes, Geneva, January 25-27, 2011

Objectives

- To develop, produce and validate longterm global ozone seeries derived from multiple satellite instruments
- 2) To evaluate the impact of the resulting improved Ozone ECV data products in a climate perspective
- 3) To explore System Specifications for ozone ECV production

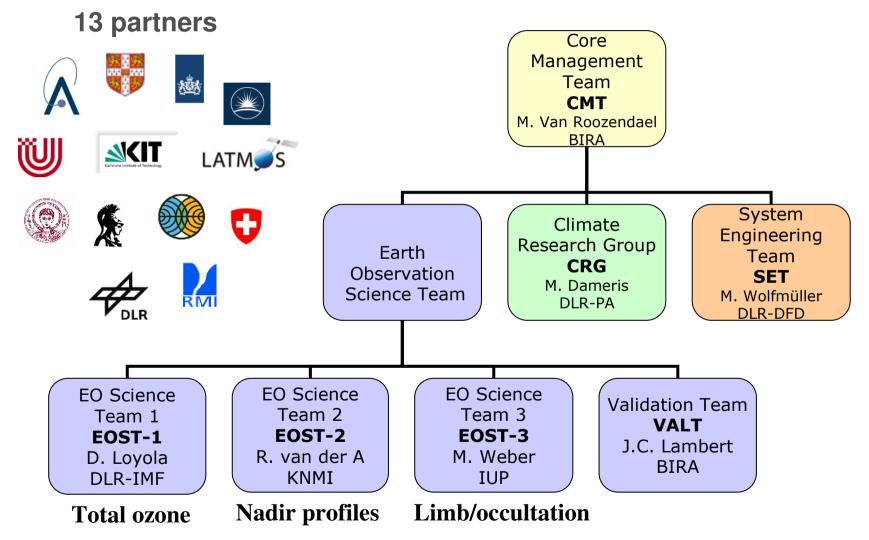


SPARC/IOC/WMO-IGACO workshop on ozone profile changes, Geneva, January 25-27, 2011

Satellite instruments and data sets

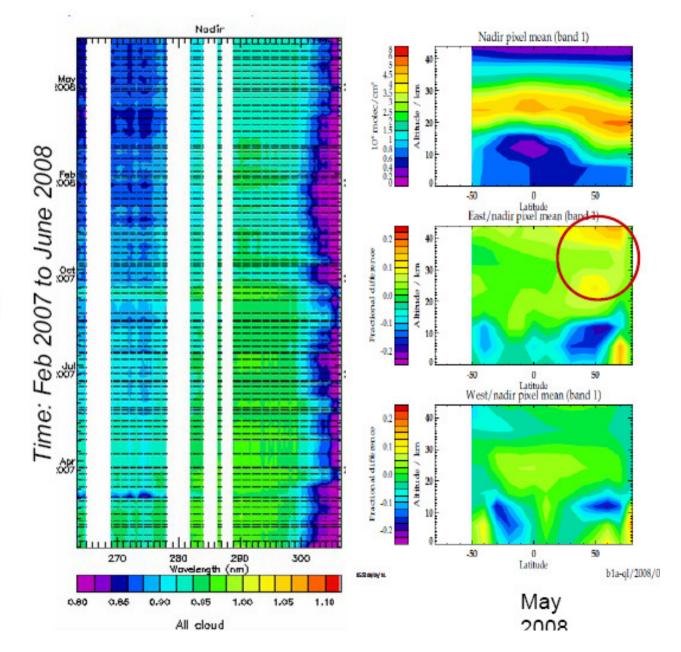
CCI focus

- **Ozone ECV products** to be developed:
 - **Total ozone** from all ESA UV-Vis nadir sensors
 - Nadir profiles from all European UV-Vis sensors
 - Limb and occultation profiles from ENVISAT & TPM sensors
- CCI Focus \rightarrow ESA and Third Party Mission (TPM) sensors
- Non-european sensors \rightarrow validation and quality assessment


Main tasks

- Level-1 \rightarrow improved soft calibrations for UV radiances
- Level-2 → retrieval algorithm improvements and standardisation, selection through round-robin exercises
- Error analysis and data characterisation
- Data merging
- Total columns
- Nadir profiles
- Limb/occultation profiles
- Prototyping, processing, validation and Climate User Assessment
- **Documentation**

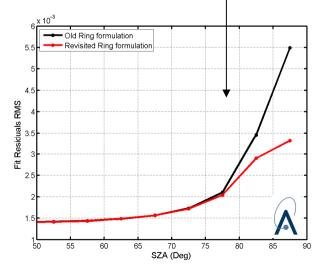
The team



SPARC/IOC/WMO-IGACO workshop on ozone profile changes, Geneva, January 25-27, 2011

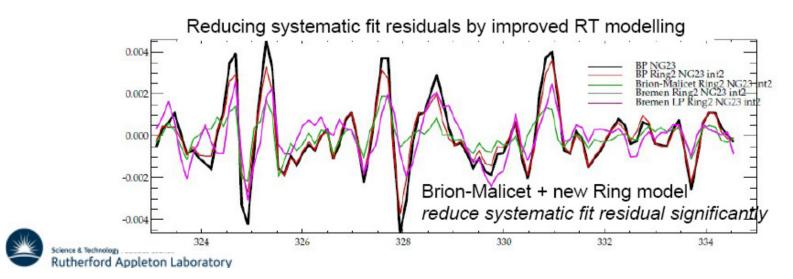
Improving the retrievals: Diagnosis of Hartley Band radiometric errors

- GOME-2 reflectance generally higher than model
 - Feb'07: by ~several
 % <280nm
 - Jun'08: by 10 15%
 <280nm
- Discrepancy depends on across-track position and leads to across-track bias in retrievals
- To be handled by fitting radiometric calibration correction as GOME-1


Level-2 algorithms

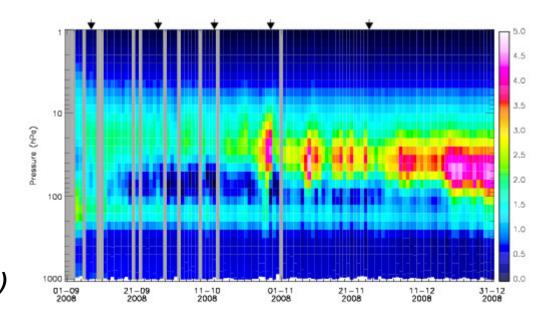
- Total columns (BIRA-DLR)
 - Baseline algorithm is GDP5 (direct-fitting approach)
 - Under development for CCI:
 - Improved cloud treatment
 - New Ring correction \rightarrow improved O₃ fits at large SZA
 - Acceleration of RT calculations
 - Error budget

European UV-Vis Sensors:


GOME	1995-2003
SCIAMACHY	2002-2010
GOME-2	2007-2010

Level-2 algorithms

- Nadir ozone profiles (KNMI, RAL)
 - Baseline algorithms are KNMI OPERA and RAL retrieval schemes
 - Merging of both algorithms through round-robin
 - Optimise retrievals for all altitudes from troposphere to stratosphere



UV-VIS nadir satellite observations

- SBUV (not used) 1978-2010
- GOME 1995-2000
- SCIAMACHY 2002-2010
- OMI 2004-2010
- GOME-2 2007-2010

Timeseries of GOME-2 ozone profiles over Neumayer in 2008 (van Peet et al., GRL 2009)

×

Limb viewing type of sensors

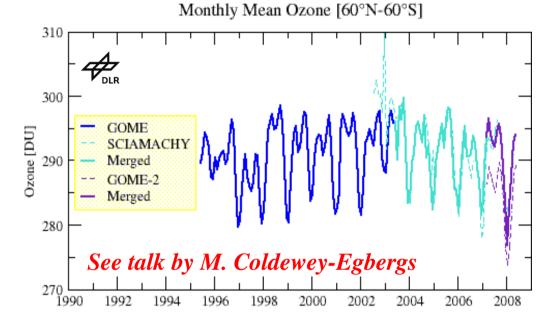
 Main focus → the characterization of individual data sets (sampling, geographical coverage, horizontal and vertical resolution) and on the error budget

SCIAMACHY → IUP scientific algorithm (full altitude coverage) See talk by C. von Savigny

GOMOS \rightarrow operational product (IPF v. 6) See talk by J. Tamminen

MIPAS See talk by T. von Clarman

- Selection among 4 competing algorithms (Round-Robin)
- Full involvement of MIPAS QWG through consultancy mechanism


OSIRIS → Univ. Saskatchewan See talk by D. Degenstein

Data merging

The issue:

How to combine measurements from sensors having different sampling, resolution and bias ?

Different possible approaches to be reviewed:

- 1) Bias corrections from "a" satellite reference (e.g. GOME)
- 2) Bias corrections from constructed satellite reference (e.g. average from different sensors)
- 3) Bias corrections based on validation data sets
- 4) Assimilation in 3D-CTM for merging

Merging of limb viewing sensors

- Merging of ENVISAT & TPM limb & occultation sensors is a (big) challenge!
- Not attempted so far
- Key issues to be addressed:
 - How to use errors from individual data sets in the merging and propagating these errors in the final merged product?
 - Different merging strategies might be needed according to different requirements from data assimilation, CCMval, and trend assessments
- One expected key output of the ozone_cci project

Validation

- Independent experts on ground network ozone measurements (columns and profiles)
- Critical knowledge of quality and maintenance of correlative data sets.

Table I: Ground-based data sets Sensor

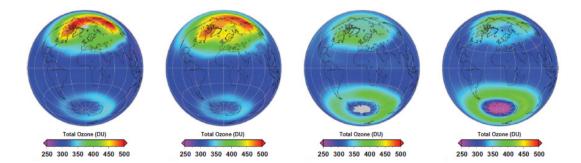
Brewer UV spectrophotometer Dobson UV spectrophotometer DOAS UV-vis spectrometer Baloon-borne ozonesonde Lidar Microwave radiometer

Data product type

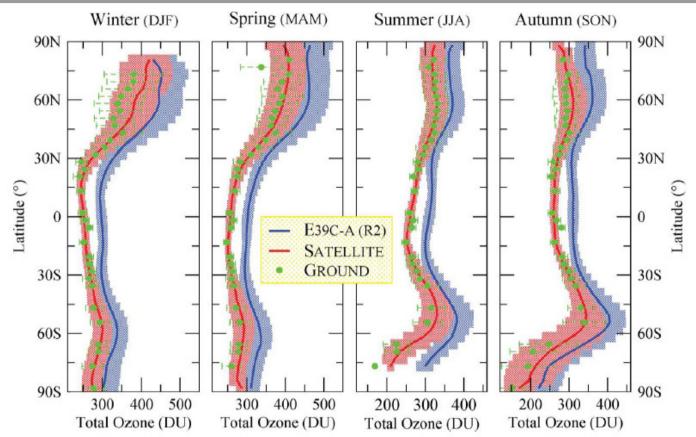
Level 2, column Level 2, column Level 2, column Level 2, profile Level 2, profile Level 2, profile

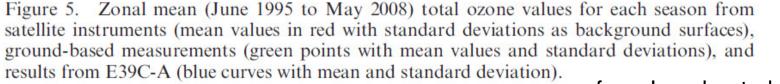
Source of the data

WOUDC, NDACC WOUDC, NDACC NDACC WOUDC, NDACC, SHADOZ NDACC NDACC



Climate modelling




- Climate Research Group (CRG → DLR, UCAM, KNMI)
- Specialized in climate research including stratospheretroposphere responses and feedbacks
- Involved in SPARC CCMVal activity
- Participate to WMO/UNEP Assessment of Ozone Depletion and IPCC reports
- Several project partners involved in IO₃C

Comparison of data derived from satellite and a CCM

from Loyola et al., 2009

User Requirements

- User requirements are being defined for the three ozone ECV products:
 - > Total ozone column
 - > Nadir-based ozone profiles
 - Limb-based ozone profiles
- Following requirements set by GCOS and climate modellers (CMUG)
- Taking into account the WMO/IGACO vision of the integrated approach for ozone monitoring using satellite data, in-situ observations, and ground-based networks, in combination with model information

User Requirements

- The ozone data requirements consist of tables containing:

- > Horizontal resolution
- > Observation frequency
- > Time period
- > Accuracy
- > Stability

Details \rightarrow See poster by M. van Weele et al.

- If applicable, distinction in ozone data requirements is made between driving research topics, geographical zone, and height range. A rationale is presented for the quantitative requirements, e.g. by reference to the contributing satellite instruments over the considered time period
- For each ozone product ancillary data requirements are defined including error characteristics, averaging kernels, a priori data, flags (e.g. detailed cloud and surface information), data format, conventions and basic visualization tools

User Requirements

Example	Quantity	Height range		
O ₃ data requirements Nadir-based ozone profiles *)		Troposphere	UT/LS	Middle Atmosphere
Driving research topics e.g.	Horizontal resolution	200-400 km	~200 km	~100 km
- Regional differences in evolution ozone layer	Vertical resolution	Tropospheric column	3 km	10 km
 Regional differences in evolution of tropospheric O₃ 	Observation frequency	3 days	3 days	3 days
 Seasonal cycle and interannual profile 	Time period	1980-2010	1980-2010	1980-2010
variability - Short-term variability	Accuracy for evolution	10 %	8 %	8 %
*) Numbers to be confirmed at the Ozone_cci progress meeting later this week	Accuracy for variability	20 %	15 %	15 %
	Stability	% / decade	% / decade	% / decade

In brief

Ozone_cci aims at:

- Consolidating the European ozone data sets, with focus on:
 - Improvement of retrieval algorithms
 - consistent data merging,
 - data characterization and error budget
- Produced the first merged limb/occultation data set based on ENVISAT and TPM missions
- Provide independent validation based on common standards
- Quantify status of ECV products against User Requirements
- Transparency → data sets and documentation will be freely available to the scientific community