

Atmospheric Chemistry Experiment

Ozone profiles measured by the ACE satellite

Peter Bernath, Kaley Walker & Tom McElroyUniversity of YorkUniversity of TorontoOn behalf of the ACE science team...ACE FTSACE / SciSat-1MAESTRO

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

Introduction Data Comparison Discussion of future measurements Conclusions

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

August 11, 2003

SCISAT-1 Satellite

Size:1.12 m dia. x 1 mTotal mass:152 kgTotal power:70 W(from single solar panel)

Launch date: 12 August 2003 Launch vehicle: Pegasus XL (provided by NASA)

Orbit: 74° inclined circular orbit at 650 km

ACE Latitude Coverage 2005/2006

Orbit allows repeat of measurement locations each year

SCISAT-1

ACE-FTS:

- Fourier transform infrared spectrometer, 2-13 microns at 0.02 cm^{-1} resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

MAESTRO:

dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm

Pointing: suntracker in ACE-FTS **Primary measurement mode:** solar occultation

- ACE-FTS profiles (version $2.2 + O_3$, N_2O_5 & HDO updates):
 - Baseline: O₃, H₂O, CH₄, N₂O, NO₂, NO, HNO₃, HCl, HF, CO, CFC-11, CFC-12, N₂O₅, ClONO₂, T and p from CO₂ lines
 - Other routine: COF_2 , CHF_2Cl , CF_4 , CH_3Cl , SF_6 , OCS, HCN
 - Research: CCl₄, H₂O₂, HO₂NO₂, COClF, COCl₂, CCl₂FCClF₂, CH₃CClF₂, ClO, C₂H₂, C₂H₄, C₂H₆, CH₃OH, HCOOH, H₂CO, N₂, (HOCl), additional isotopologues
- IMAGERS profiles (version 2.2):
 - Atmospheric extinction at 0.5 and 1.02 microns (aerosols soon)
- Version 3.0 is now being processed total number of species (including isotopologues) is almost 60

ACE Ozone Comparisons

Overview of all profile comparisons versus: SAGE II, SAGE III. POAM III, HALOE, SMR, OSIRIS, MLS, SABER, ASUR, SCIAMACHY, GOMOS, MWR, MIPAS, Eureka DIAL, ozonesondes

Agreement: ACE-FTS +5%; ACE-MAESTRO ±5% Mean calculated as (ACE-comp)/average: Solid red: SR; Dashed blue: SS; Dot-Dash black: both SR/SS; criteria: ±5° lat. and ±10° long., ±6 hr

Dupuy et al., ACP, 9, 287-343, 2009

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

Slide 8

ACE-FTS vs. SAGE II

- Example of comparison between ACE-FTS (v2.2 ozone update) and SAGE II (v6.20)
- Average differences of +5-6% (ACE-SAGE)
 between 18 and 42 km
 for both SR and SS
 occultations
- Measurement overlap period for coincidences:
 9 August 2004 6 May 2005

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

Dupuy et al., ACP, 9, 287-343,92009

ACE-FTS vs. SAGE III

Absolute difference calculated as (ACE-FTS - SAGE III); Relative difference as (ACE-FTS - SAGE III)/average; criteria: ±5° lat. and ±10° long., ±6 hr • Example of comparison between ACE-FTS (v2.2 ozone update) and SAGE III (v3.0)

- Mean differences less than ±6% (ACE-SAGE) between 12 and 42 km and generally smaller than ±2% in this range
- Measurement overlap period for coincidences: 21 February 2004 -9 October 2005

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

Dupuy et al., ACP, 9, 28743, 2009

v3.0 versus v2.2 Ozone Update

- Compared to v2.2
 Ozone Update,
 VMRs for v3.0
 have decreased by
 approx. 2-3%
 between ~15-35 km
- At altitudes above
 ~35 km, greater
 decrease in VMRs
 is seen of ~5%

Claire Waymark in progress

Starting v3.0 Validation - O₃

Comparisons with HALOE v19: southern high latitudes 2004/05

Claire Waymark, in progress

Slide 12

- At altitudes above ~35 km, the percentage differences have decreased by ~5%
- Criteria used: $\pm 5^{\circ}$ lat. and $\pm 10^{\circ}$ long., ± 6 hr; ~ 35 profiles

WMO/SPARC Ozone Profile Meeting Jan.25-27, 2011

MAESTRO

- Dual concave holographic diffraction grating spectrophotometers
- RETICON Photodiode array detectors
- MAESTRO profiles (version 1.2):
 O₃, NO₂, and total optical depth
- Version 3.0 under test (problems getting the operational version going) ~6km
 - Includes aerosol optical depth & profiles
 - Water vapour profiles

SBISAT-TURE SBISAT SBISAT-TURE SBISAT SBISAT

Long-term sensitivity changes - Vis

Long-term sensitivity changes - UV

SOAR

Solar Occultation for Atmospheric Research

Three instruments make up SOAR payload

- SOAR-IR
- Infrared Fourier transform spectrometer to measure broad range of species (almost forty) and temperature and pressure Target vertical resolution 1.5 km
- SOAR-OPTICAL
- UV-visible-near-infrared spectrometer to provide very high resolution (~0.5 km) profiles of aerosols and key species
- SOAR-IMAGER

 Solar imaging cameras to provide profiles of aerosols and clouds and enhanced pointing information to derive altitudes, temperatures and densities

Conclusions

- The overlap period with SAGE has provided a good intercalibration for SAGE v. ACE
- The hardware appears to be robust and stable
- Satellite appears to have experienced little degradation
- A future mission providing this sort of information is needed
- Overlap with ACE is HIGHLY desirable
- The SOAR mission has been proposed but has not been selected
- A small 'constellation' of instruments capable of the UV-Vis-NIR component could provide global coverage that would be useable in a data assimilation role

ACE Arctic Validation Campaign

The End Thank you for your attention