Guillaume Kirgis, Thierry Leblanc, Tao Li Stuart McDermid

Stratospheric Ozone Interannual Variability Measured by Lidar at MLO

Ozone Differential Absorption Lidar (DIAL)

- Troposphere, <20 km
 Wavelengths <300 nm
 Typically 289/299 nm
- Stratosphere, 15 55 km
 - Wavelengths >300nm
 - > Typically 308/355 nm
 - > Raman returns 332/387 nm

MLO Lidar Dataset - Questions

- Lidar data are spatially (vertically) high resolution data for all z<35 km, and most often integrated over several hours
- Is your data set suitable for assessing long-term changes ?
 - Yes, for z = [~20 km ~40 km]
- How internally consistent is it ?
 - Experimental level Reasonably consistent
 - DIAL is self calibrating
 - Measurements are made at the same solar time (beginning at the end of astronomical twilight)
 - Retrieval level Very consistent
- > What is the evidence that it is internally consistent ?
- Only one significantly different instrumental configuration (change in 2001)
- Results were produced with the same family of analysis versions (LidAna v5.4 to v6.2)
- Magnitude of annual cycle remains consistent from one year to another (consider at least 150 pts/year)
- How can it be used to evaluate other data sets ?
 - Night-by-night coincidences as well as climatological comparisons are possible
 - Special care must be taken to compare with low resolution and/or instantaneous data (e.g., satellite)
- Can it be used in conjunction with other data sets to provide a long (20-30 year) record ?
 - Yes, as far as sufficient overlap exists (at least a two-years?)

MLO Lidar – Ozone Climatology

MLO Lidar – Precision & Resolution

NDACC - Quality Control

A Commitment to Data Quality

Investigators subscribe to a protocol designed to ensure that archived data are of as high a quality as possible within the constraints of measurement technology and retrieval theory

> Validation is a continuing process

- Instruments and data analysis methods are evaluated prior to NDACC acceptance and are continuously monitored throughout their use.
- Formal intercomparisons are used to evaluate algorithms and instruments

NDACC Stratospheric Ozone Data Available

LIDAR Stratospheric Ozone

Last update: October 1, 2010

		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Eureka, Canada (80.05°N, 86.42°W)											
Ny Ålesund, Spitsbergen (78.92°N, 11.93°E)											
Andøya, Norway (69.3?N, 16.0?E)											
Hohenpeissenberg, Germany (47.80°N, 11.02°E)	1987 <										
Observatoire Haute Provence, France (43.94°N, 5.71°E)											
Toronto, Canada (43.66°N, 79.40°W)											
Tsukuba, Japan (36.05?N, 140.13?E)	1988 <										
Table Mountain, CA, USA (34.4°N, 117.7°W)	1989 <										
Mauna Loa, Hawaii (19.54°N, 155.58°W)											
Reunion Island, France (20.8°S, 55.5°E)											
Lauder, New Zealand (45.04°S, 169.68°E)											
Rio Gallegos, Argentina (51.60?S, 69.32?W)											
Dumont d'Urville, Antarctica (66.67?S, 140.01?E)											
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Eureka, Canada (80.05°N, 86.42°W)											
Ny Ålesund, Spitsbergen (78.92°N, 11.93°E)											
Andøya, Norway (69.3?N, 16.0?E)											
Hohenpeissenberg, Germany (47.80°N, 11.02°E)	1987 <										
Observatoire Haute Provence, France (43.94°N, 5.71°E)											
Toronto, Canada (43.66°N, 79.40°W)											
Tsukuba, Japan (36.05?N, 140.13?E)	1988 <										
Table Mountain, CA, USA (34.4°N, 117.7°W)	1989 <										
Mauna Loa, Hawaii (19.54°N, 155.58°W)											
Reunion Island, France (20.8°S, 55.5°E)											
Lauder, New Zealand (45.04°S, 169.68°E)											
Rio Gallegos, Argentina (51.60?S, 69.32?W)											
Dumont d'Urville, Antarctica (66.67?S, 140.01?E)											

Mobile Lidars for Intercomparisons

- McGee (GSFC)
- "Ozone Trailer"
 - O₃, T, Aerosol, H₂O
- "AT Trailer"
 - T, Aerosol, H₂O
- Sites visited
 - TMF (Many)
 - MLO (2)
 - Lauder (2)
 - OHP
 - Ny Alesund
 - Hohenpeissenberg

NDACC-MLO Validation Campaign 2002

Worst and Best Intercomparisons

JPL Lidar – Satellite Validation

Satellite	Instrument	References	Satellite	Instrument	References
ERBS	SAGE II	McDermid et al, 1990 (2) Tsou et al, 1995	TIMED	SABER	Garcia-Comas et al, 2003
UARS	MLS	Fishbein et al, 1996 Froidevaux et al, 1996 Wu et al, 2003	ENVISAT	GOMOS	Meijer et al, 2004, 2006, 2007 Stebel et al, 2006
	CLAES	Gille et al, 1996 Bailey et al, 1996		MIPAS	Fricke et al, 2004 Cortesi et al, 2007 Meijer et al, 2006, 2007
	HALOE	Bruhl et al, 1996 Hervig et al, 1996		SCHIAMACHY	Von Savigny et al, 2005 Brinksma et al, 2004, 2006 Rosanov et al, 2007 Meijer et al 2007
	HRDI	Leblanc et al, 1999 (2)	DMSP- F16	SSMIS	Swadley et al, 2008
NOAA	SBUV-2	Planet et al, 1995	SCISAT-1	ACE	Sica et al, 2008 Depuy et al, 2008
CHAMP	GPS	Beyerle et al, 2003	AURA	MLS	Leblanc et al, 2006 Jiang et al 2007
ERS-2	GOME	Meijer et al, 2006 Iapolo et al, 2007		HRDLS	Nardi et al, 2008
ODIN	SMR	De la Noë, 2002 Jégou et al, 2008		TES	

Issues and Concerns

- Cross sections ACSO WMO/IO3C Initiative
 - How accurately are they known, especially temperature dependence?
 - > Are we using the best values?
 - How do we achieve uniformity between techniques?
- Resolution Leblanc ISSI Project
 - How to define?
 - How do we achieve uniformity between techniques?
- Intercomparisons how to reconcile?
 - Number density vs geometric altitude (lidar)
 - Partial pressure vs pressure (high resolution ozonesonde)
 - > Mixing ratio vs pressure (low resolution satellite)

Ozone Relationship to Airmass Origin

10-day backward trajectories at 350 K for 51 air parcels sampled by the MLO lidar between 1 June and 30 September 2002. Each trajectory is color-coded by the deseasonalized ozone mixing ratio measured by the lidar.

MLO Ozone Time Series

Ozone Time Series Regression Analysis

 $O3(t) = (O3mxr)_{mth} - mean_{1996-2010}[(O3mxr)_{mth}]$

 $O3(t) = \alpha \bullet trend + \beta \bullet solar + \gamma_1 \bullet QBO_1 + \gamma_2 \bullet QBO_2 + \varepsilon \bullet ENSO + \mu \bullet ODGI + \psi \bullet EPflux + residual$

Ozone Variations Response to the QBO

Ozone Variations Response to the QBO

NDA(

Ozone Variations Response to the ENSO

Ozone Variations Response to the Solar Cycle

Ozone Variations Response to the Depleting Gas Index

Ozone Variations Response to the EP Flux

Lidar Ozone Linear Trend

Regression Analysis Residuals

MLO Ozone Time Series Regression Analysis

Summary of Responses to the Regression Parameters

MLO Ozone Time Series Regression Analysis

