

Lowermost tropospheric ozone observed from space by multispectral synergism of IASI (IR) and GOME-2 (UV)

J. Cuesta¹, M. Eremenko¹, X. Liu², G. Dufour¹, Z. Cai³, M. Höpfner⁴, T. von Clarmann⁴, P. Sellitto¹, G. Foret¹, B. Gaubert¹, M. Beekmann¹, J. Orphal⁴, K. Chance², R. Spurr⁵ and J.-M. Flaud¹

Scientific motivation

Tropospheric ozone is a major atmospheric pollutant

- It directly affects public health, aggravating respiratory diseases and increasing premature mortality
- It damages ecosystems and reduces plants growth
- Emissions of precursors reduced significantly in the last decades in regions as Europe, but it has not been reflected in O₃ concentrations
- > Monitoring tropospheric ozone is mandatory
 - Only satellite observation can measure its daily and seasonal evolution at the regional and global scales

 \Box How to observe O₃ in the lowermost troposphere from space ?

□ Which UV/TIR spectrocopic data are coherent enough for synergism?

We propose a new multispectral synergism of IASI (IR) and GOME-2 (UV)

IASI+GOME-2: a new joint inversion of collocated IR and UV spectra using Tikhonov-Phillips constraints

1. Multiple spectral fitting

Simultaneous fit of IR and UV spectra

Adjusting a unique Ozone profile and instrumental parameters

2. Multispectral sensitivity: Averaging kernels

2. Multispectral sensitivity: Degrees of freedom in the Lowermost Troposphere (up to 3 km asl)

0.25 DOFs over land 0.15 DOFs over ocean

<0.10 DOFs

0.35 DOFs over land 0.25 DOFs over ocean DOF_{IASI} + 40% 2. Multispectral sensitivity: Height of maximum sensitivity in the Lowermost Troposphere

3 km agl over land 4.3 km agl over ocean

3.7 km agl

2.2 km agl over land 3.5 km agl over ocean H_{IASI} - 800 m

3. Validation against ozonesondes : IASI+GOME-2 vs. Smoothed Ozonesondes (HITRAN2004 + Brion et al., 1993)

119 sondes during the summer of 2009 (57 days), from 10 stations over Europe

Good agreement: Low mean bias and reasonable RMS differences for the LT and LMT. Correlation is particularly good for the LMT

3. Validation against ozonesondes : IASI+GOME-2 vs. Raw Ozonesondes (HITRAN2004 + Brion et al., 1993)

119 sondes during the summer of 2009 (57 days), from 10 stations over Europe

Direct comparisons: LMT retrieval also shows very low mean bias and good correlation

4. Spectroscopic coherence UV vs TIR ?

Similar results with UV cross sections -5%

4. Spectroscopic coherence : using HITRAN 2000 + Brion et al. 1993 ?

IASI+GOME-2 is HITRAN2004+BRION1993

4. Lower tropospheric ozone observations : IASI+GOME-2 vs. IASI and GOME-2

19 August 2009

4. Lower tropospheric ozone observations : IASI+GOME-2 vs. IASI and GOME-2

20 August 2009

Ozone plumes depicted by both IASI and IASI+GOME-2

Only observed by IASI+GOME-2 5. Lowermost tropospheric ozone : IASI+GOME-2 observations vs. CHIMERE model 19 August 2009

5. Lowermost tropospheric ozone : IASI+GOME-2 observations vs. CHIMERE model 20 August 2009

Summary

We have developed a new multispectral method to observe tropospheric ozone from space: "IASI+GOME-2"

- ✓ It simultaneously fits UV and TIR spectra
- ✓ It enables a mean enhancement of sensitivity of 40% to ozone in the LMT
- ✓ It uses HITRAN2004+BRION1993 → Best for IASI+GOME-2 (note that spectra are recalibrated within the method)
- ✓ It shows a good agreement with ozonesondes, both smoothed by the retrieval AVK and raw measurements
 - ✓ Only IASI+GOME-2 depicts lowermost tropospheric ozone plumes (as shown by CHIMERE) → Air Quality studies
- Future developments will focus on
 - The contribution of the Chappuis band in the visible, towards a three band TIR+UV+VIS ozone retrieval
 - Radiative effects of aerosols on ozone retrievals

Acknowledgements

Suplementary material

		IASI+GOME-2		IASI		GOME-2	
	Atmospheric column	Land	Ocean	Land	Ocean	Land	Ocean
	LMT	0.34	0.23	0.24	0.16	0.08	0.08
		(±0.04)	(±0.04)	(±0.03)	(±0.04)	(±0.01)	(±0.02)
Degrees of	LT	0.75	0.64	0.62	0.52	0.25	0.24
freedom for		(±0.05)	(±0.05)	(±0.03)	(±0.04)	(±0.03)	(±0.04)
signal	TROPO	1.72	1.51	1.52	1.34	0.67	0.65
DOF_{col}		(±0.07)	(±0.12)	(±0.06)	(±0.09)	(±0.04)	(±0.05)
-	TOTAL	5.20	4.92	3.43	3.20	3.41	3.32
		(±0.12)	(±0.19)	(±0.10)	(0.10)	(±0.10)	(±0.12)
Height of	LMT	2.20	3.48	3.02	4.26	3.68	3.64
maximum		(±0.50)	(±0.56)	(±0.67)	(±0.51)	(±0.50)	(±0.65)
sensitivity	LT	2.45	3.83	3.21	4.36	3.72	3.66
H_{col}^{\max}		(±0.55)	(±0.57)	(±0.70)	(±0.53)	(±0.46)	(±0.64)

Suplementary material

Direct comparison of IASI+GOME-2 ozone retrieval vs. Raw ozonesondes

Atmospheric	Bias	RMS	R	S_{col}^{tot}	S_{col}^{smooth}
column					
LMT	-0.1	2.4	0.75	2.0	1.8
	(-0.7 %)	(24.2 %)		(20.2 %)	(18.0 %)
LT	-0.7	4.4	0.58	2.6	2.2
	(-3.2 %)	(20.4 %)		(12.2 %)	(10.3 %)
TROPO	-2.0	6.9	0.86	3.8	3.3
	(-4.5 %)	(15.6 %)		(9.0 %)	(7.7 %)
UPTO30	-4.7	15.4	0.92	7.4	6.2
	(-1.8 %)	(5.7 %)		(2.9 %)	(2.5 %)

Suplementary material

IASI+GOME-2 with HITRAN 2000 / with -5% UV cross sections vs. Ozonesondes

Atmospheric column	Bias	RMS	R
LMT	-1.6 / -1.2	2.7 / 2.4	0.69 / 0.78
	(-14.7 % / -12.0 %)	(24.9 % / 22.8 %)	
LT	-4.3 / -2.9	6.2 / 5.1	0.40 / 0.54
	(-18.5 % / -13.0 %)	(26.8 % / 22.9 %)	
TROPO	-5.4 / -4.4	8.7 / 7.7	0.85 / 0.88
	(-10.9 % / -9.6 %)	(17.4 % / 16.4 %)	
UPTO30	-6.6 / 4.0	16.6 / 14.8	0.91 / 0.93
	(-2.5 % / 1.5 %)	(6.2 % / 5.7 %)	