

Bureau International des Poids et Mesures

Ozone cross-sections (Hartley band) Progress towards new accurate values

J. Viallon, F. Idrees, P. Moussay, S. Lee and R.I. Wielgosz,

ACSO meeting 3-5 June 2013, WMO, Geneva

Surface ozone networks

Global, regional and national ozone measurement networks = thousands of measurements of the surface ozone concentration every day

Traceability of surface ozone measurements

Resolving the discrepancy

UV photometry

Reference instrument = NIST-SRP

- \Rightarrow BIPM maintains 5 replicates
- \Rightarrow Two sources of bias found (2006)
- \Rightarrow Comparability improved (2007)
- \Rightarrow Discrepancy not solved!

Gas Phase Titration

$NO + O_3 \rightarrow NO_2 + O_2$

Traceable to NO or NO_2 \Rightarrow BIPM maintains both NO and NO_2 standards

- \Rightarrow Both compared several times
- \Rightarrow Discrepancy not solved!

Need accurate measurements of the ozone cross-section

Relative or absolute measurements?

Absolute absorption measurements are performed in pure ozone, without reference to another absorption measurement

Relative absorption measurements are performed in a gas cell containing ozone/nitrogen

Laser ozone photometer

Step 1 – relative measurements of the ozone cross-section

Light source = frequency doubled argonion laser

4 3 different wavelengths in the Hartley band: 244.06 nm, 248.32 nm and 257.34 nm.

Intensity stabilised with Acousto-Optic
Modulator

Laser ozone photometer performances validation

Linearity versus ozone mole fraction

- Tested against SRP31
- No non-linearity observed

Linearity versus laser light power

- Light power density with laser ~ 10 μ W cm⁻² (< 1 μ W cm⁻² with lamp)
- Tested on range 10 μ W cm⁻² to 60 μ W cm⁻² : no non-linearity.

Stability

- Laser system always been more noisy than lamp system
- Intensive stability tests!

Laser ozone photometer uncertainty budget

Parameter	value	Standard uncertainty	Relative uncertainty
Temperature T	295 K	0.061 K	2.1 10-4
Pressure P	1000 mbar	0.64 mbar	6.4 10-4
Optical length L_{opt}	893.9 mm	0.4 mm	4.5 10-4
Product of transmittances D	0.95	1.2 10-5	2.6 10-4
Combined relative uncertainty (without the absorption cross-section)			8.5 10 ⁻⁴

Major improvement compared to SRP = reduced uncertainty on the path length.

3 mm diaphragm before/after cells to help laser alignment

Relative measurements of the ozone cross-section with the UV laser ozone photometer

Comparison between SRP31 and the laser ozone photometer

Deduce relative absorption cross-section at three wavelengths

Petersen M., Viallon J., Moussay P. and Wielgosz R.I., 2012, **Relative measurements of ozone absorption cross-sections** at three wavelengths in the Hartley band using a well-defined UV laser beam, <u>J. Geophys. Res., 117, D05301</u>

Relative measurements of the ozone cross-section with the UV laser ozone photometer

Internal consistency of data sets confirmed

Discrepancies between data sets confirmed

Need more accurate reference!

Ozone cross-section, a measurement challenge

The BIPM facility for ozone absorption crosssection measurements

Frequency doubled argon-ion laser with intensity stabilisation

Mass spectrometer

High accuracy pressure gauge (Baratron) for P < 1 mbar

Temperature controlled cryostat

Absorption path length measurements by interferometry

Michelson interferometer to deduce L_{opt} in the cell in which the pressure is varied

Edlen formula for the air index of refraction at pressure P and temperature T

$$n-1 = \frac{p \cdot 10^{-8} \left[8342.54 + 2406147(130 - \sigma^2)^{-1} + 15998(38.9 - \sigma^2)^{-1} \right] \left[1 + 10^{-8} \cdot \left(0.601 - 0.00972T \right) p \right]}{96095.43 \left(1 + 0.003661T \right)}$$

Absorption path length measurements by interferometry

Measurements

Uncertainty budget

Ozone generator

- Ozone produced by discharges in pure oxygen
- **•** generator = double wall cylinder in glass
- generation part inserted in cryostat
- controllable cryostat temperature from 74 K and above

Ozone evaporation-condensation cycles

Ozone Pressure vs. Absorbance

Conclusion

- The BIPM provides the basis for a single, <u>coherent system</u> of measurements throughout the world, <u>traceable</u> to the International System of Units (SI).
- For ozone at ambient level, <u>comparability</u> is insured through International comparisons of ozone standard instruments (UV photometers)
- Traceability to the SI is under question as two reference methods do not agree
- To resolve this issue, new (more accurate) measurements of the ozone absorption cross-section in the Hartley band are undertaken
- **•** Relative values at 3 laser wavelength were published in 2012
- Absolute values at the same wavelengths are coming soon