

Measurements of high-resolution ozone absorption cross-sections in the 230 - 1050 nm spectral region

Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows

University of Bremen, Institute for Environmental Physics

ACSO meeting WMO Geneva, Switzerland

An Excellence Initiative Success Story

*EXCELLENT.

Long-term detection of O₃ in atmosphere

Ozone absorption broadband and single wavelengths databases

Spectral channels of the satellites- and ground basedinstruments measuring ozone and other trace gases cover a wide spectral range from near UV to the visible and IR.

Ozone absorption spectrum in near UV – near IR affects channels for detection of other traces gases, aerosols and clouds.

- ✓ Sources
- ✓ Properties
- ✓ Uncertainties

Analysis of some databases

Some sources of the ozone absoprtion cross-sections

- Experimentally obtained data from pioneer works (1932) until most recent studies: online spectral atlas of gaseous molecules of the Max-Planck Institute for Chemistry, Mainz.
- ✓ Absorption Cross-sections of Ozone (ACSO) committee
- ✓ IUP, University of Bremen , MolSpec Lab homepage

Several sources provide slightly different versions of the high-resolution datasets

Bass-Paur data:

MPI online atlas: experimental BP dataset for different temperatures at air wavelengths, obtained by personal communication in 2000.

ACSO homepage: polynomial coefficients calculated by Bass and Paur using the temperature dependence of the original data (excluding the 218 K) at air wavelengths .

HITRAN 2008: polynomial coefficients by Bass and Paur. Corrections compared to the original data: air/vacuum wavelength conversion according to Edlen's equation and wavelength shift.

BMD data:

MPI online atlas and ACSO homepage: experimental data at air wavelengths for different temperatures, obtained by personal communication in 1998

Work by Liu et al. Atmos. Chem. Phys. 2007: polynomial coefficients for vacuum wavelength scale from four temperatures measurements (218, 228, 243, and 295 K)

Several sources provide slightly different versions of the high-resolution datasets

IUP Bremen data

Burrows et al., Bogumil et al., Voigt et al., Serdyuchenko et al.

IUP MolSpec homepage – updated as soon as new data arrive

ACSO homepage

Personal communications

Measurements error budgets

			Uncertainty, %		
	Data	Scaling method	Statistical	Systematic	Total , %
	Hearn, 1961 (253 nm)	Absolute , pure ozone	1.05	-	2.1
	Anderson et al. 1992	Absolute , pure ozone	-	0.5	< 1 (0.7)
	Anderson et al. 1993	Using Anderson et al. 1992	-	1.3	< 2
	El Helou et al. 2005	Absolute , pure ozone			<0.82
	Petersen et al. 2012	Using BMD and BP	0.085	~2	~ 2
	Axson et al. 2011	Using Orphal 2003			4 - 30
	BP, 1980 – 1985	Using Hearn	1	?	>2.1
	BMD, 1992 – 1998	Absolute , pure ozone	0.9–2.2	1.3 (Hartley) 1.3 - 2.5 (Huggins) 1.5–4 (350 –420 nm) 1.5 (420–830 nm)	2-3 2-4 2-6 2-3
	Burrows et al. 1999	Absolute, titration	Lamp drift < 2	2.6	2.6 – 4.6
	Voigt et al. 2001	Integrated Burrows et al.		> 2.6 – 4.6	3-6
	Bogumil et al. 2003	Using BP	<1.1	> 2.1	3.1*

*excluding regions with σ <10⁻²³ cm²/molecule (365 – 410 nm and longer than 950 nm) and 305-320 nm

Typical measurements error budget

Hearn, PROC. PHYS. SOC., 78, 1961

Analysis of the Random Errors						
Wavelength	Mean (6 observation)	Tube length	Pressure gauge	Total SD		
2536. 5 A	1.05 %	0.54 %	0.81 %	1.43 %	(RMS)	
Systematic Errors						
Wavelength	Correctior	n for stray light	Correction fo	r		

eom	P	
2536.5 A 0.0	-	

Best Estimates of the Absorption Coefficients				
Wavelength	Molecular absorption cross section			
2536.5 A	114.7 ± 2.4 10 ⁻¹⁹ cm ² 2.1% ?			

Measurements error budgets

			Uncertainty, %		
Data	Scaling method	Statistical	Systematic	Total , %	
Hearn, 1961 (253 nm)	Absolute , pure ozone	1.05	-	2.1	
Anderson et al. 1992	Absolute , pure ozone	-	0.5	< 1(0.7)	
Anderson et al. 1993	Using Anderson et al. 1992	-	1.3	< 2	
El Helou et al. 2005	Absolute , pure ozone			<0.82	
Petersen et al. 2012	Using BMD and BP	0.085	~2	> 2.1	
Axson et al. 2011	Using Orphal 2003			4 - 30	
BP, 1980 – 1985	Using Hearn	1	2.1	>2.1	
BMD, 1992 – 1998	Absolute , pure ozone	0.9-2.2	1.3 (Hartley) 1.3 - 2.5 (Huggins) 1.5–4 (350 –420 nm) 1.5 (420–830 nm)	2 - 3 2 - 4 2 - 6 2 - 3	
Burrows et al. 1999	Absolute, titration	Lamp drift < 2	2.6	2.6 <i>—</i> 4.6	
Voigt et al. 2001	Integrated Burrows et al.		> 2.6 - 4.6	3-6	
Bogumil et al. 2003	Using BP	< 1.1	> 2.1	3.1*	

*excluding regions with σ <10⁻²³ cm²/molecule (365 – 410 nm and longer than 950 nm) and 305-320 nm

BMD measurements error budget

	Daumont <i>et al</i> . J Atm Chem , 15, 1992 195 – 345 nm	Malicet <i>et al.</i> J Atm Chem , 21, 1995 195 – 345 nm	Brion <i>et al.</i> J Atm Chem, 30, 1998 350 – 830 nm
	295 K	218 – 295 K	218K and 295 K
Optical density	1% (below 335 nm)	1%	1 – 3 % 350–420 nm 1 % 420–830 nm
Optical path	0.05 %	0.05 %	0.1%
Ozone pressure	0.1 %	0.1 %	0.1 %
Impurities	<0.1%	<0.1 %	<0.1%
Temperature	0.02 %	0.02 – 0.15 %	0.02 % (295 K) 0.15 % (218 K)
Wavelength	o - o.o5 % Hartley o - o.8 % Huggins	0.005 – 0.015 nm	0.1 % 420–830 nm 0.1 – 0.7 % 350–420 nm
Total systematic	1.3 %Hartley1.3-2.5 %Huggins	1.3 – 1.5 % Hartley 1.3 – 3.5 % Huggins	1.5 - 4% 350 – 420 nm 1.5 % 420 – 830 nm
Random error RMS	0.9-2.2%	0.3–2.0 % (<340 nm)	0.9–2%

Region,	Spectrometer	Resolution,	Calibration	Path,	Lamp stability	Optical
nm	detector	nm		cm	%	density
213 – 300	Echelle, ICCD	0.018	Relative	5	De, 0.5	0.5 - 2
300 - 335	FTS, GaP	0.01	Absolute	135	Xe, 2	0.1-2
335 - 350	FTS, GaP	0.012	Relative	270	Хе, 1	0.1-1
350 - 450	Echelle, ICCD	0.02	Relative	~2000	Xe, 1	0.05 – 1
450 – 780	FTS, Si	0.02-0.06	Absolute	270	Tungsten, 0.2	0.05 – 2
780 – 1100	FTS, Si	0.12-0.24	Relative	270	Tungsten, 0.2	0.001-0.1

Uncertainty in the absorption cross-section obtained from absolute measurements in the Huggins and Chappuis bands (at 50 mbar, 193-293 K and path length 135 and 270 cm)

Systematic uncertainty			Statistical u	ncertainty		
 Ozone impu – oxygen i – Leaks Pressure sei 	urity: mpurity nsors (o.o2 mb):	0.005 % <0.1 % 0.04 %	 Ozone init Pressure fl Temperatu Light sour 	ial pressure: luctuations (ure fluctuations ce stability,	<o.o4mb): ons (<o.3k):< th=""><th><1 % <0.08 % <0.1 % 0.2 - 2%</th></o.3k):<></o.o4mb): 	<1 % <0.08 % <0.1 % 0.2 - 2%
• Temp. sense	ors offset (1K):	0.3-0.5 %	relative	to optical	density OD=1	
Iemp. non-Cell length (uniformity (1K): (1 mm):	0.3-0.5 % 0.04-0.07 %	(dependin	g on spectra	l region):	
Total:		0.8-1.8% (0.4 - 0.7)	Total: excluding low	absorption r	egion near 380 nm	1.4 - 3.2 % (1 - 2.2)
			and longer tha	in 800 nm		
Desien	Cu o otrao ao otrao	Decelution	and longer tha	n 800 nm	1	Ontingl
Region, nm	Spectrometer detector	Resolution	Calibration	Path, cm	Lamp stability*, %	Optical density
Region, nm 213 – 300	Spectrometer detector Echelle, ICCD	Resolution	Calibration Relative	Path, cm	Lamp stability*, % De, 0.5	Optical density 0.5 – 2
Region, nm 213 - 300 300 - 335	Spectrometer detector Echelle, ICCD FTS, GaP	Resolution 0.018 nm 0.01 nm	Calibration Relative Absolute	Path, cm	Lamp stability*, % De, 0.5 Xe, 2	Optical density 0.5 – 2 0.1 – 2
Region, nm 213 – 300 300 – 335 335 – 350	Spectrometer detector Echelle, ICCD FTS, GaP FTS, GaP	Resolution 0.018 nm 0.01 nm 0.012 nm	Calibration Calibration Relative Absolute Relative	Path, cm 5 135 270	Lamp stability*, % De, 0.5 Xe, 2 Xe, 1	Optical density 0.5 - 2 0.1 - 2 0.1 - 1
Region, nm 213 – 300 300 – 335 335 – 350 350 – 450	Spectrometer detector Echelle, ICCD FTS, GaP FTS, GaP Echelle, ICCD	Resolution 0.018 nm 0.011 nm 0.012 nm 0.02 nm	And longer that Calibration Relative Absolute Relative Relative	Path, cm 5 135 270 ~2000	Lamp stability*, % De, 0.5 Xe, 2 Xe, 1 Xe, 1 Xe, 1	Optical density 0.5 - 2 0.1 - 2 0.1 - 1 0.05 - 1
Region, nm 213 - 300 300 - 335 335 - 350 350 - 450 450 - 780	Spectrometer detector Echelle, ICCD FTS, GaP FTS, GaP Echelle, ICCD FTS, Si	Resolution 0.018 nm 0.011 nm 0.012 nm 0.02 nm 0.02 nm	Absolute Relative Relative Relative Relative Absolute	Path, cm 5 135 270 ~2000 270	Lamp stability*, % De, 0.5 Xe, 2 Xe, 1 Xe, 1 Xe, 1 Tungsten, 0.2	Optical density 0.5 - 2 0.1 - 2 0.1 - 1 0.05 - 1 0.05 - 2
Region, nm 213 - 300 300 - 335 335 - 350 350 - 450 450 - 780 780 - 1100	Spectrometer detector Echelle, ICCD FTS, GaP Echelle, ICCD FTS, Si FTS, Si	Resolution 0.018 nm 0.012 nm 0.02 nm 0.02 nm 0.02-0.06 nm 0.12-0.24 nm	Absolute Relative Relative Relative Relative Relative Relative Relative	Path, cm 5 135 270 ~2000 270 270 270	Lamp stability*, % De, 0.5 Xe, 2 Xe, 1 Xe, 1 Xe, 1 Tungsten, 0.2	Optical density 0.5 - 2 0.1 - 2 0.1 - 1 0.05 - 1 0.05 - 1 0.05 - 2 0.001 - 0.1

Currently available datasets

- Different sources can provide slightly different versions
- Single wavelength measurements can be very helpful because of high accuracy
- Reported uncertainties can be underestimated or incomplete

Data set	Calibration	Uncertainty, %
Burrows et al., 1999	absolute	2.6 – 4.6
Bogumil et al., 2003	Using BP	3.1
BP, 1985 (HITRAN 2008)	Using Hearn	2.3
BMD, 1992-1998	absolute	2 - 6
This work , 2012	absolute	2 – 6*
	*Excluding regions	near 380 nm and longer than 800 nm

- ✓ Temperature dependence
- Agreement in Hartley, Huggins, Chappuis and Wulf bands
- Scaling factors and wavelength shifts

Comparison of databases

Analysis: comparison with published data

- Comparison between cross-sections is not the same thing as comparison between retrievals results (slit functions, scalings, shifts)!
- Databases compared: Burrows *et al.*, Bogumil *et al.*, Voigt *et al*, BP, BMD, Serdyuchenko *et al.*
- Agreement within experimental uncertainties for most of the spectral regions (excluding 360 -420 nm and 950 – 1050 nm)

Hartley band

Temperature dependence In Huggins Band

AC

$$\sigma(\lambda, T) = a_0[1 + a_1(\lambda).T + a_2(\lambda).T^2]$$

Initial resolution:

Rough resolution match:

- Rectangular function
 Dobson: 1 nm
- Brewer: 0.4 nm

Deviations from 2nd order polynomial <2 % (noise)

Comparison between published and new data in Huggins band at 293 K: wavelength shift, scaling factor, difference

 $\delta\sigma(\lambda) = \frac{\sigma_1(\lambda) - SF \cdot \sigma_2(\lambda + \delta\lambda)}{\sigma_2(\lambda + \delta\lambda)} \cdot 100\%$

SF – scaling factor $\delta\lambda$ – wavelength shift $\delta\sigma$ – relative deviation

Smallest deviation averaged over the regions:

323 – 330 nm

332 – 340 nm

323 – 340 nm

New data	293K
Voigt <i>et al.</i>	293K
Bogumil <i>et al.</i>	293K
BP _{exp}	298 K
BMD _{exp}	295K

Comparison between published and new data in Huggins band: wavelength shift, scaling factor, difference

"Minimum" between Huggins and Chappuis bands

Wulf Band

- Weak absorption, measurements are very sensitive to the baseline and S/N;
- ✓ Temperature dependence in NIR;
- ✓ Region is interesting for future missions (SAGE III)
- New measurements are ongoing with dual channels FTS

Dual channel FTS; Weak absorption measurements

Ongoing measurements

Experimental set-up with dual channel Bruker FTS HR 125

Lamp drift is under control!

New measurements near 380 nm

Previous measurements near 380 nm:

- 2001 FTS
- 2012 Echelle

New measurements using dual FTS:

- Less concatenations;
- Better resolution.

Region	Spectrometer	Resolution, nm	Calibration
213 – 300	Echelle	0.018	Relative
300 - 335	FTS	0.01	Absolute
335 - 350	FTS	0.012	Relative
350 – 450	Echelle	0.02 nm	Relative
450 – 780	FTS	0.02-0.06 nm	Absolute
780 – 1100	FTS	0.12-0.24 nm	Relative

Current status

- Comparison of the existing data is not a straightforward task;
- Retrieval tests are vital;
- Choice of the dataset should not be based on the absolute values or reported uncertainties

2

3

1

 Internal IUP tests: The total ozone columns retrieved from GOME-2 and SCIAMACHY satellites are in good agreement with the amounts retrieved by the current data

- The ACSO committee inspired a lot of new analysis and measurements;
- Low absorption measurements using dual-channel FT spectrometer;
- Feedback from ozone investigating groups and organizations

Thank you for attention!

Work is supported by European Space Agency

Appendix

Retrieval tests using the new ozone cross-section data

GOME-2

SCIAMACHY

- The new experimental cross-section data are tested in total ozone retrieval of GOME-2 and SCIAMACHY.
- The data have to be convolved to GOME-2 and SCIAMACHY slit function.
 - The total ozone columns retrieved from GOME-2 and SCIAMACHY satellites are in good agreement with the amounts retrieved by the current data, +1% and +2% respectively.
- fit residuals (RMS) for GOME-2 and SCIA similar to satellite FM.

High resolution O₃ cross-sections before 1995

ACSO Incentig wivio Ocheva, Switzenanu

Main parameters of experimental set-ups

	Setup VIS/IR	Setup UV/VIS
Spectrometer	Fourier Transform	Echelle ('cross dispersion')
Source	Xe and Tungsten lamps	Xe and D2 lamp
Detector	Si/GaP photodiode	ICCD
Resolution, FWHM	0.02 nm @ 300 nm	0.02 nm @ 300 nm
Wavelength region	290– 1100 nm	212 nm – 600 nm
Acquisition time	Slow (tens of minutes)	Fast (minutes)
Wavelength calibration	Excellent (o.ooo5 nm in UV)	Excellent (agrees with NIST Hg line at 253 nm better than 0.001 nm)
Absorption path	135 and 270 cm	5 cm, 135 cm – 30 m
Cooling	Double jacket quartz cell, pi	re-cooler, cryogenic cooling

priorities/challenges

- □ Goals and strategy
- □ Re-analysis
- ☑ Experimental set-up
- Serial measurements and preliminary results

gas in Sensors: sensor 1 sensor 3 coolant out sensor 2 sensor 3

Upgraded cooling system

- ✓ Max possible cooling: down to 193 K
- Temperature stabilization at intermediate points with step of 10 K
- Reliable temperature determination (better than 5% accuracy) : Pt sensors, spectroscopic method

Upgraded gas pre-cooler

- features 10 meter Cu pipe bound to fit cryostat bath
- guaranteed cooling down to cryostat vessel temperature;
- ozone-friendly internal coating
- minimal heat gain between precooler ant test cell
 - ACSO meeting WMO Geneva, Switzerland

Temperature control

Introduction and motivation Experimental set-up Analysis of sources of uncertainty Results and Outlook

Cooling: double jacket (vacuum/ethanol) cell, cryostat with **pre-cooling**: 10 m Cu tube coil with inert coating

Control: O2-A band at 760 nm, experimental spectrum: from FTS at 0.5 cm, model spectrum: using HITRAN line parameters accuracy: 5 K or better

ACSO meeting WMO Geneva, Switzerland

Echelle wavelength calibration

Introduction and motivation Experimental set-up Analysis of sources of uncertainty Results and Outlook

Relative to NIST database

