Ozone UV absorption cross section at 253.65 nm revisited and simultaneous UV-IR measurements

Mickaël Guinet Claude Camy-Peyret

Christof Janssen Didier Mondelain

Outline

- Introduction
- Absolute measurements in the UV (@ 253.65 nm)
 - Method
 - Experimental details
 - Preliminary results
- Simultaneous UV IR (10 µm) measurements?

Why remeasure O₃ at 253.65 nm ?

O₃ Standard tropospheric measurements (air quality monitoring) recommended value has sizable uncertainty dominant uncertainty factor in modern UV photo spectrometers standard for measurements in other wavelength regions additional sources of systematic bias have been identified Discrepancy between UV and IR data (~ 5%) ? requires multi-wavelength comparisons re-determination of absolute values

IT 1953	-	Inn & Tanaka
H 1961	-	Hearn
RD 1964	-	Raper & DeMore
G 1968	-	Griggs
MM 1986	-	Molina & Molina
MBHM 1986	-	Mauersberger et al.
MHBM 1987	-	Mauersberger et al.
YFEP 1988	-	Yoshino et al.
MBD 1989	-	Malicet et al.
DBCM 1992	-	Daumont et al.
DVHHC 2004	-	Dufour et al.

Absolute Measurements at 253.65 nm

Part I

Measurement Principle

Measure I, I_0 , and L directly; n through p and T

Experimental Setup

Experimental Setup (Crossed UV/IR Beam Arrangement)

- Crossed beam arrangement for simultaneous UV - IR (10 µm) measurements
- All pyrex, BaF₂ windows, all teflon valves
- windows inclined by 3°
- ozone decomposition :
 ~ 2‰ / h, 4‰ / h (UV off, on)
- ► T (PT 100) = (21.31 ± 0.26)°C
- MS investigation of sample and residues

Experimental Setup (Ozone Generation & Handling)

2. Ozone purification / recovery

3. Pressure measurement

Measurement Principle -Sample Run

Uncertainty Budget

$$\sigma = \underbrace{\frac{k_{\rm B}T}{(1 - x_c - x_{nc})p}}_{n^{-1}} \cdot L^{-1} \cdot \ln\left(I_0/I\right)$$

у		u(y)	u(y)/y (%)
Cell Length (L)	49.495 mm	0.027 mm	0.05
Temperature (T)	294.46 K	0.05 K	0.02
Pressure (p)	76 - 393 Pa		0.08
ln(//I ₀)	1.1 - 5.4		0.05
Impurity (x _c)	≲ 0.005		≃ 100
Impurity (x _{nc})	1 - 4 ‰		~ 7

MS - Analysis

Origin of CO₂?

- Transfer dip-tubes (stainless steel) have previously been used for the analysis of stratospheric CO₂ samples. Check for contamination.
- Several cleaning cycles with high concentrations of O₃ have lowered the maximum content of CO₂ down to 0.5 ‰, when O₃ was produced in a similar apparatus.

▶ 1 ‰ of uncertainty due to impurities seems to be possible.

Need to verify for UV samples.

Results -Impurities already present

IR measurements at 10 µm

Part II

LPMAA Interferometer Controlled TDLAS

IR Ozone Measurements

in the 1032.5 - 1033.5 cm⁻¹ range

Line Positions in the (100←000) Band

#	J', K'a, K'c ← J", K"a, K"c	E" [cm ⁻¹]	ν [cm ⁻¹]	u(v) [cm ⁻¹]	V - VHITRAN [CM ⁻¹]
1	16 3 13 ← 15 2 14	113.0870	1132.599228	3 10 ⁻⁵	-4.2 10 ⁻⁵
2	946 ← 835	58.4464	1132.603357	3 10 ⁻⁵	-4.3 10 ⁻⁵
3	35 2 34 ← 34 1 33	505.5065	1132.656978	3 10 ⁻⁵	-0.3 10 ⁻⁵
4	36 0 36 ← 35 1 35	510.2025	1132.785929	3 10 ⁻⁵	-7.1 10 ⁻⁵
5	19317 ← 18216	158.1653	1132.811396	3 10 ⁻⁵	-4.4 10-5
6	1046 ← 937	66.0127	1133.433514	LIPTRAN 2	-0.4 10-5
7	18 2 16 ← 17 1 17	127.2639	1133,586800	3 10 ⁻⁵	-5.0 10 ⁻⁵
8	38 1 37 ← 37 2 36	693.889re	1133.631677	3 10 ⁻⁵	-2.3 10 ⁻⁵
9	37 1 37 Out P38	538.9365	1133.671119	3 10 ⁻⁵	-8.1 10 ⁻⁵
10	21 3 19 ← 20 2 18	191.7092	1133.724521	3 10 ⁻⁵	-3.9 10 ⁻⁵
11	42 2 40 ← 41 1 39	750.2643	1133.978509	3 10 ⁻⁵	-12.0 10 ⁻⁵
12	37 2 36 ← 36 1 35	563.9440	1134.02872	3 10 ⁻⁵	-8.5 10 ⁻⁵
13	11 4 8 ← 10 3 7	74.4314	1134.251439	3 10 ⁻⁵	-3.1 10 ⁻⁵
14	38 0 38 ← 37 1 37	568.5063	1134.453749	3 10 ⁻⁵	-8.1 10 ⁻⁵
15	23 3 21 ← 22 2 20	228.7342	1134.509712	3 10 ⁻⁵	+1.2 10 ⁻⁵

Intensities in the (100←000) Band

#	J', K'a, K'c ← J", K"a, K"c	E" [cm ⁻¹]	S [cm ⁻¹]	Ν	u(S)/S (%)	S/S _{HITRAN} -1 [%]
1	16 3 13 ← 15 2 14	113.0870	4.096 10-22	7	0.8	3.4
2	946 ← 835	58.4464	2.427 10-22	7	0.5	2.0
3	35 2 34 ← 34 1 33	505.5065	9.436 10-22	8	0.5	3.7
4	36 0 36 ← 35 1 35	510.2025	1.367 10 ⁻²¹	10	0.7	2.7
5	19317 ← 18216	158.1653	4.906 10-22	10	ARP	N 2006
6	1046 ← 937	66.0127	2.717 10 ⁻²² r t	har	0.6	2.5
7	18 2 16 ← 17 1 17	127,2609	9 1 1 1 1 1 1 1 1 1 1	10	0.8	2.8
8	38 1 37 ← 37 2 36 siti	es 594.9334	7.687 10-22	10	0.7	2.9
9	37 36 0 36	538.9365	1.280 10-22	9	0.5	3.9
10	21 3 19 ← 20 2 18	191.7092	5.152 10 ⁻²²	9	0.8	1.2
11	42 2 40 ← 41 1 39	750.2643	3.126 10-22	9	0.5	2.6
12	37 2 36 ← 36 1 35	563.9440	8.288 10-22	6	1.1	3.0
13	11 4 8 ← 10 3 7	74.4314	2.974 10-22	6	0.6	1.8
14	38 0 38 ← 37 1 37	568.5063	1.174 10 ⁻²¹	7	0.5	3.6
15	23 3 21 ← 22 2 20	228.7342	5.339 10 ⁻²²	7	0.8	1.5

Summary and Outlook

- Ozone cross section at 253.65 nm has been measured at 295 K
- ▶ Its value (1.133 \pm 0.12%) 10⁻¹⁷ cm² is 1.3% smaller than Hearns.
- A difference of ~1% remains even if systematic impurity effects (CO₂) are considered. Note that the presence of multiple reflections would lead to an artificial increase of the observed value.
- Condensables still need better quantification
- Intensities of 15 strong lines in the 10 µm region are systematically (2.6(4)%) higher than HIITRAN 2004.
- Will measure the UV ozone cross section at lower pressure, longer path lengths and for individual isotopes (¹⁶O₃, ¹⁶O¹⁶O¹⁸O, ¹⁸O₃).