Ozone absorption cross-section in ozone lidar algorithm

Sophie Godin-Beekmann
LATMOS-Institut Pierre Simon Laplace
CNRS-UPMC

Ozone Theme Meeting 2009
IO3C-WMO-IGACO O3/UV Geneva, 11-13 May 2009
Main ground-based instruments for ozone profile measurements

- **Ozone sondes (GAW, NDACC)**
 - Balloon borne in situ chemical sondes
 - 0 – 30 km, best 0 – 25 km – high resolution

- **Lidar (NDACC)**
 - Active remote sensing, DIAL method
 - Strato: 10 – 50 km, best: 15 – 45 km – high resolution in the low-middle stratosphere

- **Microwave (NDACC)**
 - Passive remote sensing of ozone emission line in the microwave frequency range
 - Range: 20 – 60 km - Low resolution

- **Umkehr: Dobson or Brewer spectrometers (GAW)**
 - Zenith sky observations at high solar zenith angle
 - Best range 20 – 45 km : Umkehr layers – Low resolution
Importance of monitoring ozone in the high stratosphere

Ozone evolution at 35-45 km altitude range from various lidar measurements time series

Steinbrecht et al., 2006; 2008
Intercomparisons within NDACC

Numerous campaigns involving several lidars, sondes, microwave spect., satellites (SAGE, HALOE, …)
Best agreement in 20 – 40 km range

NDACC strongly involved in satellite validation
Provides intercalibration of successive satellite missions

SOMORA microwave spectrometer (Switzerland)

Principle of lidar ozone measurement

DIAL Method: Differential Absorption Lidar

- Emission of 2 laser beams in the UV range (λ_{on}, λ_{off})
- Different ozone absorption cross-section
- Pulsed laser sources: range resolved measurement
- Large dynamic of the lidar signals: several acquisition channels
- N_2 Raman wavelengths: volcanic aerosols
- Self calibrated measurement

Common wavelengths pairs used:
- Stratospheric systems: 308, 351-355 nm
- Tropospheric: 266, 289, 299, 316 nm

Retrieval of ozone number density

DIAL Method: \textbf{D}ifferential \textbf{A}bsorption \textbf{L}idar

\[n_{O_3}(z) = -\frac{1}{2} \frac{d}{dz} \left(\Delta \sigma_{O_3}(z) \right) \left(\ln \left(\frac{S(\lambda_{on}, z) - S_b(\lambda_{on}, z)}{S(\lambda_{off}, z) - S_b(\lambda_{off}, z)} \right) \right) + \delta n_{O_3}(z) \]

\textit{Laser wavelengths chosen so that the correction term is less than 10\% of main term}

\[\delta n_{O_3}(z) = \frac{1}{\Delta \sigma_{O_3}(z)} \left[\frac{1}{2} \frac{d}{dz} \ln \left(\frac{\beta(\lambda_{on}, z)}{\beta(\lambda_{off}, z)} \right) - \Delta \alpha(z) - \sum_i \Delta \sigma_i n_i(z) \right] \]

\text{Extinction by other species}

\text{Rayleigh & Mie}

\text{Backscatter Rayleigh & Mie}

\text{Laser signal background correction term}
Example of DIAL ozone profile

- Ozone measurements performed during the night
- Temporal resolution 3 – 4 hours, depending on laser power and repetition rate
- Require clear skies
Ozone absorption cross-sections

- Evaluation of $\sigma_{o3}(\lambda)$ at emitted laser (308 nm & 355 nm) and 1st Stokes N\textsubscript{2} Raman wavelengths (332 nm & 387 nm)

- Variation of $\sigma_{o3}(\lambda)$ with temperature T taken into account:
 $\sigma_{o3}(\lambda)$ varies with altitude

 $\sigma_{o3}(\lambda)$ variation with temperature (from Bass & Paur)
 $\sigma_{O_3}(\lambda, z) = (a + b.(T - 273.15) + c.(T - 273.15)^2)^{20}$ cm2

Sensitivity at 308 nm~ 0.2%/K

Temperature data from
- off-wavelength lidar signal
- meteorological analyses
- climatological model
Accuracy of DIAL ozone profiles

Residual error after correction of δno3 (not including the photon noise)

- Atmospheric number density 5\% error
- 1.5 \% precision in ozone cross-section, Temperature : error of 5 K

Above \sim15-20km, residual error dominated by error on $\sigma_\text{o3}(\lambda, z)$
Conclusions

- DIAL ozone retrieval requires determination of ozone cross-sections in the range 266 nm – 332 nm, with accurate temperature dependence.

- Correct evaluation of ozone cross-section temperature dependence important for ozone trends evaluation, taking into account temperature trends in the stratosphere.

- At present, most lidar groups within NDACC use Bass & Paur ozone cross-sections but DIAL ozone measurements can easily be re-computed from archived raw data in case of change in recommended ozone cross-section.